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2.1 What is the shape and size of Earth?

2.1.1  What is the mean (average) radius of Earth?
The mean radius of Earth is 6371.01 ± 0.2 km (Yoder,  1995).

2.1.2  What is Earth's ellipsoid of rotation (reference ellipsoid), and 

how does the radius of the ellipsoid vary at the poles and equator?

https://en.wikipedia.org/wiki/Reference_ellipsoid

The following values are from Yoder  (1995, p. 8)
•  mean equatorial radius (Geodetic Reference System, 1980): a = 6378.137 km
•  polar radius (GRS, 1980):  b = 6356.752 km
•  flattening  f  = (a – b) / a (GRS, 1980):  f  = 1 / 298.257222

The difference between the mean equatorial radius and the polar radius is approximately 21.385 km, or 
about 0.336% of the mean radius of Earth.

2.1.3  What is the geoid?

https://en.wikipedia.org/wiki/Geoid

The geoid is an equipotential surface associated only with gravity and the rotation of Earth (i.e., not due to 
tides, wind, or other external forcings).  The geoid is a smooth but irregular surface whose irregularity is 
due to the uneven distribution of mass in Earth’s interior.  At any point on the geoid surface, the gravita-
tional force acts perpendicular to the surface.  Positive gravity anomalies that indicate excess mass result in 
the geoid surface being above the reference ellipsoid;  negative anomalies (mass deficit) are indicated by 
the geoid surface located below the reference ellipsoid.  The geoid is determined using gravity observa-
tions from orbital satellites (Cazenave, 1995).

The geoid surface varies from 106 m below the reference ellipsoid (SW of Sri Lanka) to 85 m above 
(Iceland) the reference ellipsoid in Iceland, so the variation in geoid surface elevation spans about 191 m, 
or about 0.9% of the variation in radii of the reference ellipsoid.
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2.1.4  What is the range of topographic/bathymetric elevations on 

Earth?
The highest point relative to mean sea level on Earth is the summit of Chogolungma (Mt. Everest; 8848.86 
m) in the Himalaya.  The lowest point is the Challenger Deep in the Marianas Trench, -10,920 ± 10 m.

The variation in topographic elevation on Earth’s surface spans about 19,769 m.

2.1.5  What is the shape of Earth that we assume for the purpose of 
plate - kinematic modeling?
A spherical Earth is assumed for kinematic modeling in this primer, in the interest of modeling simplicity.  

Aside from making the mathematics of plate kinematics simpler for most people to work with, the assump-
tion of a spherical Earth is spatially reasonable.  The largest variation from a sphere among the non-
spherical shapes attributed to Earth is seen in it’s reference ellipsoid (a difference of 21.385 km between 
polar and equatorial radii), compared with the variations in topography (19.769 km between Chogolungma 
and the Challenger Deep) or geoid height (0.191 km between Iceland and the depression SW of Sri 
Lanka).  

Imagine that we drew a perfect circle with a 100 mm radius, using a one-ought (0) drafting pen whose line 
is 0.35 mm wide.  Such a circle would just fit on a typical letter-sized piece of paper.  Let this circle 
represent a slice through the center of a spherical Earth and through its poles.  At that scale (1:63,710,100) 
the difference between the polar and equatorial radii of the reference ellipsoid would be about 0.336 mm.  
That is, the total divergence from the circle would be contained within the width of the one-ought line that 
defines the circle.

Earth is as spherical as a billiard ball.  The World  Pool-Billiard Association specifies  “All balls must ... 
measure 2 ¼ (±.005) inches [5.715 cm (± .127 mm)] in diameter” (https://wpapool.com/equipment-
specifications/).  Earth’s reference ellipsoid would be within the tolerance of a billiard ball if Earth’s mean 
diameter was 2.25 inches or 5.715 cm.

2.2 Getting familiar with vectors

2.2.1  What is a vector?
A vector is a list of numbers.  If the list has three elements or components (each of which is a real num-
ber), we say that the vector has three dimensions.  It suits our purposes in the study of plate kinematics to 
work with 3-dimensional vectors.    

The quantitative description of any vector requires a coordinate system so that characteristics like length 
and direction can be measured.  The coordinate systems that we will use in our study of plate kinematics 
will be right orthogonal coordinate systems, also known as Cartesian coordinate systems in honor of René 
Descarte.  The three coordinate axes are perpendicular to each other.
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We  can conceptualize a vector as something like a line segment connecting two distinct points that do not 
share the same location.  Let’s call those two points P and Q for convenience.  Line segments have a 
length or magnitude that is the distance between the two points. Vectors  are characterized by both the 
distance between points and the direction from one point to the other as, for example, from P to Q or from 

Q to P.    

For the sake of this initial explanation, let’s represent the vector from P to Q with the symbol PQ and 

agree that PQ has a definite magnitude (the distance between P and Q) and direction (from P to Q).  

Plainly, the distance from P to Q is the same as the distance from Q to P, but the direction is opposite.  

Vector  PQ is the inverse of vector QP;  that is, PQ = –QP.

Now imagine two other points, S and T, and the associated vector ST .  If PQ has the same magnitude and 

direction as ST , then we say that vector PQ is equivalent to vector ST ;  that is, PQ = ST .  

One way of making sense of this equivalency is by insisting that the origin of a coordinate system used to 
characterize the magnitude and direction of a vector be the same as the “origin point” of the vector — for 

example, point P of the vector PQ.  With P at the origin (P = {0, 0, 0}), the three coordinates of the “destin-

ation point” Q within the specified Cartesian coordinate system (Q = {xQ, yQ, zQ}) supply the three ele-

ments of numerical description of the vector.  We  sometimes refer to the coordinate system axes as the X, 
Y, and Z axes, respectively, or as the 1, 2, and 3 axes.  Transitioning to the way that we will represent 

vectors elsewhere in this text, let us re-name vector PQ as vector a that extends from the origin of a Carte-

sian coordinate system to an endpoint whose coordinates are {a1, a2, a3} = {xQ, yQ, zQ}.  That is, vector a 

extends from the point {0, 0, 0} to the point {a1, a2, a3}, so vector a = {a1, a2, a3}.

Finally, we note that a vector is a first-rank tensor and a scalar is a zero-rank tensor (that is, a scalar has a 
magnitude but no direction).     

In Mathematica, lists of numbers or variables are usually contained within curly brackets, so in defining 
a vector a we might write the following code.
vectorA = {2,5,3}

The traditional matrix form of a vector depicts the elements of the vector in a column, with the first-row 

element corresponding to the X coordinate of the vector, the second-row element is the Y coordinate of 
the vector, and the third/bottom-row element is the Z coordinate.

vectorAMatrixForm = 
2

5

3

2.2.2  What is a location vector?
As we use the term in plate kinematics, a location vector extends from the origin of the coordinate system 

at the center of Earth to a specified point on Earth’s surface.  Such location vectors are often assigned a 
length of one Earth radius.
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Figure 2.1.  The Cartesian geographic coordinate system.  The ZGEOG axis passes through the geographic 
North Pole, the XGEOG axis contains the intersection of the Prime Meridian and the Equator, and the 
YGEOG axis is normal to the Prime Meridian.  Positive longitude is measured east of the Prime Meridian;  
positive latitude is measured north of the Equator.  The Cartesian coordinates of a point Q, whose longi-
tude and latitude are known, are {xQ, yQ, zQ}.  From Cronin (1991).

2.2.3  How do we determine the location vector to a point whose 

geographic coordinates (latitude and longitude) are given?
Geographic coordinates of latitude and longitude are typically presented in one of three ways:  as decimal 
degrees (e.g., 35.2546°), as degrees and decimal minutes (e.g., 35°15.276’), or as degrees, minutes, and 
decimal seconds (e.g., 35°15’16.56”).  There are 60 minutes per degree of arc and 60 seconds per minute 
of arc.  Examples of the conversion to decimal degrees follow.

EXAMPLE.  Convert the given geographic coordinates to decimal geographic coordinates , where ' 
indicates minutes and " indicates seconds of arc.

     •   35°15.276’:  35° + ( 15.276'
60'/°

) = 35.2546°

     •  35°15’16.56”:  35° + ( 15'
60'/ °

) + ( 16.56 "
3600 "/ °

) = 35.2546°

Given the decimal latitude and decimal longitude of a point Q, the coordinates in a Cartesian geographic 
coordinate system are

xQ = cos(latitudeQ) cos(longitudeQ)
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yQ = cos(latitudeQ) sin(longitudeQ)

zQ = sin(latitudeQ)

The corresponding location vector to point Q is 

     Q = {xQ, yQ, zQ}

In Mathematica, the built-in trigonometric functions Cos[] and Sin[] act on an angle expressed in 
radian measure.  If the input to these functions is typically expressed in degrees, we add the built-in 
function Degree to the argument within the square brackets to convert from degrees to radians as 
follows.
xQ = Cos[latitudeQ Degree] Cos[longitudeQ Degree];
yQ = Cos[latitudeQ Degree] Sin[longitudeQ Degree];
zQ = Sin[latitudeQ Degree];

vectorQ = {xQ, yQ, zQ}

The user-defined function makeLocationVector[] can be inserted in a Mathematica notebook to 
perform the conversion from geographic to Cartesian geographic coordinates.  The arguments supplied 
to this function include the latitude and longitude of the point, expressed in decimal degrees.  Those 
input arguments are modified by the built-in function Degree to convert from decimal degrees to 
radians.

makeLocationVector[lat_, long_]:={Cos[lat Degree] Cos[long Degree], 
Cos[lat Degree] Sin[long Degree], Sin[lat Degree]};

Example.  We  could define a location vector for a point P whose geographic coordinates are 35.248°N 

latitude and 119.958°W longitude using the following code in association with the user-defined function 
makeLocationVector[].

First, we establish the user-defined function.
makeLocationVector[lat_, long_]:={Cos[lat Degree] Cos[long Degree], 
Cos[lat Degree] Sin[long Degree], Sin[lat Degree]};

Second, we define the input data.  Notice that west longitudes and south latitudes are negative numbers.
latP = 35.248;
longP = -119.958;

Third, we execute the computation to define the location vector to point P.
vectorP = makeLocationVector[latP, longP];

Finally, if we want to see the numerical result of the computation, we add the following line that uti-
lizies the built-in Mathematica function N, without a semicolon at the end.
N[vectorP]

Exercise 2.1 (HW-01)  Use Google Earth to find the latitude and longitude of some place that is of 
interest to you, using decimal degrees. Create a Mathematica notebook with headers for its title, intro-
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duction, input data, computation, output, and references (if any). Save the notebook using your last 
name as the first part of the notebook name, then the homework number. For example, “Jackson-
HW01”. Add text to the notebook providing your name, the date you began and completed the note-
book, a statement of the problem, and relevant explanations of the variables and code. Finally, add 
input lines of executable code.  The purpose of this notebook is to compute the unit location vector to 
the point that is of interest to you.

2.2.4  What is a zero vector?
If all of the elements of a vector are zeros, that vector is called a zero vector.

2.2.5  How do we determine the length of a vector?
Imagine we have a vector a such that its coordinate along the x (or 1) coordinate axis is the element a1, its 
coordinate along the y (or 2) axis is a2, and its coordinate along the z (or 3) axis is a3.

a = {a1, a2, a3}

We  can use the Pythagorean Theorem to determine the length of that vector, which we indicate using 
double bracket bars.

a = a1
2 + a2

2 + a3
2

The length of a vector is also called its magnitude.  If the vector represents a velocity, the length of that 
vector is called the speed.

EXAMPLE.  Let a = {5, 4, 2}, then the length of a is 

     a = 52 + 42 + 22 = 45

In Mathematica, the built-in function Norm provides the length or magnitude of a vector.
length_a = Norm[a];

2.2.6  What is a unit vector?
A vector whose length is 1 is called a unit vector.

2.2.7  How do we determine the unit vector that is parallel to a non - 
zero vector?
The unit vector is determined by dividing each element of the vector by the vector’s length.  Imagine we 
have a vector a such that

a = {a1, a2, a3}.
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The length of vector a is 

a = a1
2 + a2

2 + a3
2 .

The unit vector that coincides with vector a is designated by a  (called “a hat”) and is given by

a  = 
a
a

 = { a1
a
, a2

a
, a3

a
}

EXAMPLE.  Let a = {5, 4, 2}.  The length of a is 

     a = 52 + 42 + 22 = 45

     The unit vector that is parallel with (or coincides with) vector a is 

     a  = { 5
45
, 4

45
, 2

45
} ≃ {0.7454, 0.5963, 0.2981}

In Mathematica, the built-in function Normalize provides the unit vector that coincides with the 
specified vector.
unitVectorA = Normalize[vectorA];

2.2.8  What is a dot product?
Given two non-zero vectors, a and b where

a = {a1, a2, a3}.

and 

b = {b1, b2, b3},

the dot product (also known as the inner product or the scalar product) can be defined in several 
equivalent ways.  These include

a · b = aTb

a · b = [(a1 b1) + (a2 b2) + (a3 b3)], and

a · b = a b cos(θ) 

where θ us the angle between the two vectors.

In Mathematica, the built-in function Dot[] acts on the two vectors listed between the square brackets 
and returns the dot product of the two vectors.
result1 = Dot[a,b];
Another way of obtaining the dot product in Mathematica is to put a period between the vectors.
result2 = a.b
While there is a “middle dot” symbol available in the Mathematica typesetting menu, this is not recog-
nized as a functional character.

2.2.9  How do we determine the angle between two non - zero 
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vectors?
One of the definitions of the dot product provides a way to determine the angle θ between two non-zero 
vectors.

a · b = a b cos(θ) 

Rearranging the equation to isolate the angle θ, we have

θ = cos-1( a ·b
a b

).

If both a and b are unit vectors, the angle between a  and b

 is given by

θ = cos-1(a  · b

).

In Mathematica, the built-in function VectorAngle[] acts on the two vectors listed between the 
square brackets and returns the angle between two vectors, returning the answer in radian measure.  To  

convert this to degrees, the result can be multiplied by (180/π)
thetaRadian = VectorAngle[a,b]
thetaDegrees = VectorAngle[a,b] (180/π)

2.2.10  How do we convert a location vector to geographic 

coordinates (latitude and longitude)?
Toward the end of some kinematic computations, we will need to convert the Cartesian geographic coordi-
nates of a location vector into geographic coordinates of latitude and longitude.  

Let’s define a location vector a that we would like to convert to geographic coordinates.

a = {a1, a2, a3} 

The easiest part of the problem is to find the latitude, because 

latitude = sin-1(a3) = arcsin(a3).

Imagine that we start with a point A whose geographic coordinates are latitude 35°N and longitude 
125°E, and we want to know its coordinates in the Cartesian geographic coordinate system. In Mathemat-
ica, we might define those geographic coordinates as follows.
latA=35;
longA=125;

Based on the information in section 2.2.3, we define the function makeLocationVector[] as
makeLocationVector[lat_, long_]:={Cos[lat Degree] Cos[long Degree], 
Cos[lat Degree] Sin[long Degree], Sin[lat Degree]};

We  proceed to find the location vector locVectA as
locVectA=makeLocationVector[latA, latB];

The numerical approximation of the location vector locVectA, expressed to six places past the decimal 
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point, is
{-0.469846, 0.671010, 0.573576}

Example, part 1.  The latitude (latitudeA) of the location vector (locVectA) is given by
latitudeA=ArcSin[locVectA[[3]]] (180/π)
where the third component of vector locVectA is designated by locVectA[[3]], and the answer is 

expressed in degrees.  We  can use a hand calculator to verify that sin-1(0.573576) ≃ 0.610865 radian, 
and 0.610865 radian * (180°/π radian) ≃ 35°.

If components a1 and a2 are both zeros and a3 is a positive 1, the point is the north pole, whose latitude is 
90° and longitude is undefined.  If a3 is –1 and the other components are zeros, the point is the south pole 
whose latitude is –90° and longitude is undefined.

Let’s define a vector b as the projection of vector a onto the X-Y plane of the Cartesian geographic coordi-
nate system;  that is, onto the plane of Earth’s Equator (also known as the equatorial plane).

b = {a1, a2, 0} 

The length or magnitude of vector b , 〚b〛, is

〚b〛 = a1
2 + a2

2  

The X axis of the Cartesian geographic coordinate system passes through the intersection of the Prime 
Meridian and the Equator, and is the datum for determining the longitude along the Equator.  We  use the 
word “datum” in the sense of the point or line from which the distance (or angular distance) to other points 
or lines are measured.  So the “datum” on an old-fashioned mechanical clock is the vector that points from 

the center of the clock face toward the “12.”  Let’s define vector c as the location vector to the intersection 
of the Equator and the Prime Meridian, along the positive X axis of the Cartesian geographic coordinate 
system.

c = {1, 0, 0}. 

Now, let’s define vector θ as the angle between vectors b and c, based on information from section 2.2.9.  

θ = cos-1( b ·c
b c

)

Because  b = {a1, a2, 0} and c = {1, 0, 0}, the dot product (b · c) = [(a1 * 1) + (a2 * 0) + (0 * 0)] = a1.

Noting that vector c is a unit vector (that is, 〚c〛 = 1), we can simplify the computation of θ as follows:

θ = cos-1 
a1

a12+a22

If the value of vector component a2is a positive value or zero (that is, if a2 ≥ 0),

longitude = θ 

or if the value of vector component a2is a negative value (that is, if a2 < 0),

longitude = –θ .

In Mathematica, the user-defined module findGeogCoord[] acts on a unit location vector in the 
Cartesian geographic coordinate system and yields the corresponding geographic coordinates (latitude 
and longitude).

Kinematics-Chapter-2.nb

9



findGeogCoord[vect_] := Module{lat, long, a, b, θ}, a = ArcSin[vect[[3]]];

θ = IfAbs[vect[[1]]] < 1 × 10-14
 && Abs[vect[[2]]] < 1 × 10-14

,

0, ArcCosvect[[1]]  vect[[1]]2 + vect[[2]]2 ;

b = If[(vect[[2]] < 0), (-θ), (θ)];

lat = a (180 / π);

long = IfAbs[vect[[1]]] < 1 × 10-14
 && Abs[vect[[2]]] < 1 × 10-14

,

0, (b (180 / π));

{lat, long};

In the module above, we presume that any value that is smaller than 1 × 10-14 is effectively equal to 
zero.

Example, part 2.  The longitude (longitudeA) of the location vector (locVectA) can be computed 
in a “longhand” manner as follows.

If locVectA[[1]] and locVectA[[2]] are both zero, the longitude is undefined.  (That is, if the 

first and second components of the vector locVectA both equal zero, the longitude is undefined.)  If 

locVectA={0,0,1}, the point is the North Pole (latitude 90°N, undefined longitude), and if locVec-
tA={0,0,-1}, the point is the South Pole (Latitude -90° or 90°S, undefined longitude).
If locVectA[[1]] and locVectA[[2]] are not both zero, then the angle θ between the Prime 

Meridian and the projection of locVectA onto the Equatorial plane is given by

θ = ArcCoslocVectA[[1]] locVectA[[1]]2 + locVectA[[2]]2 

If x ≥ 0, longitudeA=θ ;  if x < 0, longitudeA = –θ .

It is considerably easier to solve for both the latitude and longitude associated with the given unit 
location vector locVectorA by applying the user-defined module findGeogCoord[] as follows.
geogCoords=findGeogCoord[locVectorA];

The full process of converting from geographic coordinates to Cartesian geographic coordinates and 
back again is illustrated in the following code.

latA = 35;
longA = 125;

makeLocationVector[lat_, long_] := {Cos[lat Degree] Cos[long Degree],

Cos[lat Degree] Sin[long Degree], Sin[lat Degree]};
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findGeogCoord[vect_] := Module{lat, long, a, b, θ}, a = ArcSin[vect[[3]]];

θ = IfAbs[vect[[1]]] < 1 × 10-14
 && Abs[vect[[2]]] < 1 × 10-14

,

0, ArcCosvect[[1]]  vect[[1]]2 + vect[[2]]2 ;

b = If[(vect[[2]] < 0), (-θ), (θ)];

lat = a (180 / π);

long = IfAbs[vect[[1]]] < 1 × 10-14
 && Abs[vect[[2]]] < 1 × 10-14

,

0, (b (180 / π));

{lat, long};

locVectA = makeLocationVector[latA, longA];
N[locVectA]

geogCoords = findGeogCoord[locVectA];
N[geogCoords]

The result will be that the input data (latA, longA) will have the same values as the output data 
(geogCoords).

2.2.11  What is a vector cross product?
Imagine that we have two non-zero and non-colinear vectors, a and b.   

a = {a1, a2, a3}  and  b = {b1, b2, b3}.

The vector cross product a  b (stated as “a cross b”) yields a third vector, which is perpendicular to both 
a and b. 

a  b = {(a2 b3 – a3 b2), (a3 b1 – a1 b3), (a1 b2 – a2 b1)}.

Let c represent the vector result of a  b.  Visualize  vectors a and b on the plane that they share, where the 
angle measured in a positive (anti-clockwise) direction from a to b is less than 180° (<π radian).  Vector  c 
extends perpendicular to that plane (normal to the plane) in the direction the extended thumb on your right 
hand points when your index finger curls from a to b (see Fig. 2.2).
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Figure 2.2.  Visualization  of the geometry of a vector cross product.  The result of the vector cross product 
a  b is vector c, which is oriented perpendicular to the a-b plane.  The direction of c is given by the right-
hand rule:  the thumb of the right hand points in the direction of c, where vector b is an anticlockwise 
rotation of <180° from a around their common origin.

EXAMPLE.  Given vectors a = {5, 4, 2} and b = {3, 1, 6}.  The result of the cross product a  b is vector c.

c =  a  b = {((4*6)-(2*1)), ((2*3)-(5*6)), ((5*1)-(4*3))}

c ≃ {22, -24, -7}

If now we consider the vector result of b  a, 

b  a = {(b2 a3 – b3 a2), (b3 a1 – b1 a3), (b1 a2 – b2 a1)}.

we find that the result is another vector that is perpendicular to the a-b plane, with the same length (magn-
itude) as c but pointing in the opposite direction.

EXAMPLE.  Given vectors a = {5, 4, 2} and b = {3, 1, 6}.  The result of the cross product b  a is vector 
d.

     d =  b  a = {((1*2)-(6*4)), ((6*5)-(3*2)), ((3*4)-(1*5))}

d ≃ {-22, 24, 7}

In Mathematica, the built-in function Cross[] acts on the two vectors listed between the square 
brackets and returns the cross product of the two vectors.
result1=Cross[a,b]
Another way of obtaining the cross product in Mathematica is to select the “cross” symbol from the 
Basic Math Assistant pallette and insert it between the vector symbols.
result2=ab
Take care not to select the “times” symbol from the Basic Math Assistant pallette if you want the cross-
product function.  The Basic Math Assistant pallette is accessible from the Pallettes drop-down menu.
The “cross” symbol looks like this (  ) and the “times” symbol looks like this ( × ).  If you hover the 
cursor over the symbol in the Basic Math Assistant pallette, a box pops up and indicates the name of the 
symbol.
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2.3 Beginning to use vectors for computation on a 

spherical Earth

2.3.1  What are great circles and small circles?
The intersection of a sphere with a plane that passes through the center of the sphere is called a great 
circle.  Earth’s equator is a great circle.

The prime meridian is a semi-circular arc along the great circle that includes the spin axis (north and south 
poles) of Earth.  

If a plane intersects a sphere but does not pass through the center of the sphere, the intersection of the 
sphere and that plane is a small circle because its radius is smaller than that of the sphere.  With the single 
exception of the equator, the parallels of latitude in the geographic coordinate system are all small circles.

Ignoring the effects of topographic and bathymetric obstacles, the shortest distance between two points on 
a spherical Earth is along a great circle containing those two points.

2.3.2  What does it mean to say that a point on Earth’s surface is the 

antipode of another point?
The antipode of a point on Earth’s surface is locate directly opposite that point on the other side of Earth.  
(The word “antipode” sounds like “Auntie pode” where “pode” rhymes with “code.”)  So a vector from a 
point on Earth’s surface, extending downward through Earth’s center and all the way to the other side, 
would point toward that point’s antipode.  Two  points are antipodal if they are located along a great circle 
180° (π radians) away from each other.  The location vectors to two antipodal points are colinear, but 
pointed in opposite directions.  

2.3.3  Given a spherical Earth of radius 6371.01 km, what is the 

circumferential distance (in km) corresponding to an angular 
distance of 1° of arc along a great circle?
The circumference of an assumed-spherical Earth of radius (r) 6371.01 km is as follows.

circumference = 2 π r = 40,030.24 km

circumferential distance corresponding to 1° of arc = 
40,030.24 km

360 °
 = 111.20 km/°

circumferential distance corresponding to 1 radian of arc = 
40,030.24 km

2 π
 = 6371.01 km/rad
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2.3.4  How do we determine the angular and great-circle 

(circumferential) distance between two points on Earth’s surface?

Given two non-colinear unit location vectors, a  and b

, the angular distance θ between a  and b


 is given by

θ = cos-1(a  · b

)

as described in sections 2.2.8 and 2.2.9.

In Mathematica, the angular distance between two unit location vectors a and b can be found using the 
built-in functions VectorAngle[] and π as follows:
thetaRadians=VectorAngle[a,b]
thetaDegrees=VectorAngle[a,b] (180/π)

Knowing the angular distance θ between a  and b

, the great-circle arc distance (circumferential distance) in 

km is given by
distance = θ rad * 6371.01 km/rad 
if the angular distance is expressed in radians, or
distance = θ ° * 111.20 km/°
if the angular distance is expressed in degrees.

In Mathematica, the circumferential or great-circle distance between two unit location vectors a and b 
can be found using the built-in functions VectorAngle{] and π as follows:
circumfDist1=VectorAngle[a,b]*6371.01
circumfDist2=VectorAngle[a,b]*(180/π)*111.20
where the mean radius of Earth is 6371.01 km and the circumferential or great-circle distance between 
two points on Earth’s surface is 111.20 km/° of angular distance. 

Exercise 2.2 (HW-02)  In the early Miocene ~23 million years ago, a volcano erupted in California.  
Sometime later in the Miocene, the San Andreas fault propagated through the volcanic field, and 
separated it into what is now the Pinnacles National Monument (36°29’13”N, 121°10’01”W) on the 
west side of the fault and the Neenach volcanic field (34°44’24”N, 118°37’24”W) on the east side 
(Matthews, 1973).  
Write a Mathematica notebook that analyzes the input data to complete the following tasks.
     (a) Convert the given geographic coordinates to decimal geographic coordinates (see section 2.2.3).
     (b) Convert the decimal geographic coordinates to unit location vectors, recalling that south latitudes 
and west longitudes are negative numbers.
     (c) Determine the angular distance between the Pinnacles and Neenach (see section 2.2.9).
     (d) Find the circumferential distance between the Pinnacles and Neenach, assuming that Earth is a 
sphere of radius 6,371.01 km (see section 2.3.4).
     (e) What broad geological statement(s) can you make about the rate and magnitude of displacement 
along the San Andreas fault, based only on the information provided and your calculations?
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2.4 Working with planes and great circles through 

a spherical Earth

2.4.1  How do we determine the vector normal to a plane defined by 

two non-colinear non-zero vectors?
When we refer to a vector a that is normal to a plane, we mean that vector a is perpendicular to a plane.   
Indeed, both vector a and its inverse, vector –a, are perpendicular to the plane, although they are pointed in 
opposite directions.  (If vector a = {a1, a2, a3}, then –a = –1*a = {–a1, –a2, –a3}.)  If we require that the 
plane include the center of a sphere — the origin of the coordinate system — the intersection of the sphere 
and the plane is a great circle, as we have previously noted.  The pole of the great circle is the place on the 
sphere for which the unit vector normal to the plane, vector a , is the location vector.  The antipole corre-
sponds to the unit location vector –a .

Imagine that we have two non-zero and non-colinear vectors, b and c.  Because b and c have the same 
origin (that is, they extend from the same point at the origin of a coordinate system), there is one and only 
one plane that includes both b and c.  Vectors  b and c are coplanar.  

If b and c are location vectors, the respective two points on the sphere are located along a great circle.

A vector a that is normal to the plane defined by the non-zero and non-colinear vectors b and c is defined 
by the vector cross product

a = b  c

The other vector normal to that plane, –a, is defined by the vector cross product

–a = c  b

Vectors  a and –a are colinear with each other, point in opposite directions, and are both normal to the 
plane defined by vectors b and c.

In Mathematica, the vectors normal to non-zero, non-colinear vectors b and c can be found using the 
built-in function Cross[] as follows:
normalVectA=Cross[b,c]
normalVectMinusA=Cross[c,b]
where 
normalVectMinusA=(-1)*normalVectA

2.4.2  How do we determine the (conjugate) dihedral angles between 

two planes that pass through the origin of the coordinate system?
The angle between the vector normal to one plane (call it “plane 1”) and the vector normal to a different 
plane (call it “plane 2”) is the same as the dihedral angle between plane 1 and plane 2.  If we call the 
dihedral angle θ, the conjugate dihedral angle is equal to 180° – θ in degrees or π – θ rad in radians.
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EXAMPLE.  Given four unit location vectors (a , b, c, and d such that no two of these vectors are 

colinear and no three of these vectors are coplanar.  What are the conjugate dihedral angles between the 

plane defined by vectors a  and b

 (plane 1) and the plane defined by vectors c  and d


 (plane 2)?

     Let’s define vector m as the vector normal to plane 1.  Based on what we learned in section 2.4.1, 

     m = a   b

.

     Define vector n as the vector normal to plane 2, such that 

     n = c   d

.

     One of the two conjugate dihedral angles between plane 1 and plane 2 is θ, where (based on sections 
2.2.8 and 2.2.9)

     θ = cos-1( m ·n
m n

)

If θ is expressed in degrees, the conjugate dihedral angle is 180° – θ °;  alternatively, if θ is expressed in 
radians, the conjugate dihedral angle is π – θ rad.

In Mathematica, the dihedral angle between plane 1 and plane 2, as described in the preceding example, 
could be found as follows
thetaDegrees=VectorAngle[Cross[a,b],Cross[c,d]] (180/π)
or 
thetaRadians=VectorAngle[Cross[a,b],Cross[c,d]]
The conjugate dihedral angle would then be
conjugateDegrees=180–thetaDegrees
or 

conjugateRadians  = π – thetaRadians

Exercise 2.3 (HW-03)  Imagine yourself standing at Neenach in southern California (34°44’24”N, 
118°37’24”W), and you want to know the direction of the shortest straight-line path to Pinnacles in 
west-central California (36°29’13”N, 121°10’01”W).  The azimuth of a bearing is measured in a 
clockwise direction relative to true north.  In a general sort of way, you could start by looking toward 
true north (90°N, 0°E) and slowly rotating clockwise while keeping track of your total rotation angle 
until you are looking directly toward Pinnacles (assuming you could see that far and over the curvature 
of Earth).  If you could perform that angular measurement accurately, that total rotation angle would be 
the azimuth from Neenach to Pinnacles.  
     Judging from the geographic coordinates of Neenach and Pinnacles, would you have to rotate 
clockwise less than or more than 180° from true north to be looking along the shortest great-circle path 
to Pinnacles?  You  might want to sketch a map of the situation to form your judgement.     
     Write a Mathematica notebook that analyzes the input data to complete the following tasks.
     (a) Convert the given geographic coordinates of Neenach and Pinnacles to decimal geographic 
coordinates (see section 2.2.3).
     (b) Convert the decimal geographic coordinates to unit location vectors (locVectNeenach and locVec-
tPinnacles), recalling that south latitudes and west longitudes are negative numbers.
     (c) Determine the dihedral angle between (1) the plane defined by the location vector to Neenach 
and the location vector to the North Pole, and (2) the plane defined by the location vector to Neenach 
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and the location vector to Pinnacles  (see sections 2.4.1 and 2.4.2).  For the location vector to the North 
Pole, define locVectNorthPole = {0,0,1}.
     (d) The dihedral angle you just determined is related in some quantitative way to the azimuth of the 
great-circle path from Neenach to Pinnacles.  Conjure-up some spatial reasoning to determine that 
azimuth, and write a mathematical expression to indicate the relationship between the dihedral angle 
you computed and the azimuth in this case.  For example, 
•  azimuth = dihedral angle
•  azimuth = 360° – (dihedral angle)
•  azimuth = 180° + (dihedral angle)
et cetera.
Note that we will write some code so that future determinations of azimuth will not rely on your powers 
of spatial reasoning.

2.4.3  How do we determine the azimuth from one point to another 
point on Earth’s surface?
The process of determining the azimuth from one point to another point on Earth’s surface requires the 
unit location of those two points and the North Pole.  The geographic coordinates of the North Pole are 
latitude 90° with a longitude that is undefined, but generally taken to be 0°.  The Cartesian geographic 
coordinates of the unit location vector to the North Pole are {0, 0, 1}.

Let’s define the reference point as the point where an imaginary observer is located, from which the 
azimuth of another point is determined.  We’ll  refer to that other point as the target point.  The unit loca-
tion vectors we need to work with will be called r (to the reference point), t (to the target point), and n (to 
the North Pole).

Vector  a is defined such that a = n  r.  Vector  a is a vector normal to the plane defined by the North Pole 
and the reference point.

Vector  b is defined such that b = t  r.  Vector  a is a vector normal to the plane defined by the target point 
and the reference point.

Angle θ1 is the angle (expressed in degrees) between the vectors a and b.  This is the same as one of the 
two conjugate dihedral angles between the plane defined by vectors n and r, and the plane defined by 
vectors t and r.  (Adding two conjugate angles together sums to 180°.)

Angle θ2 is the angle (expressed in degrees) between the vectors a and t.  Angle θ2 helps us define the 
azimuth of the bearing from the reference point to the other point.  Imagine that Earth is divided into two 
hemispheres bounded by the plane that contains Earth’s spin axis and the reference point.  We  will specify 
that the north pole is “up” in this frame of reference, so one hemisphere would be to the right of the refer-
ence point and the other would be to the left.
     If the other point is located along the same circle of longitude as the reference point, then θ2 will equal 
90° or 180°, and the bearing from the reference point to the other point will either be 0° or 180°.
     If the other point is located on the hemisphere to the right of the reference point, then θ2 will be less 
than 90°.  In that case, the azimuth of the bearing from the reference point to the other point is equal to θ1.  
Bearings are expressed in degrees relative to north, where due north is 0°, due east is 90°, due south is 
180°, and due west is 270°.
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     If the other point is located on the hemisphere to the left of the reference point, then θ2 will be greater 
than 90°.  In that case, the azimuth of the bearing from the reference point to the other point is equal to 
(360°- θ1).

Vector  c is the vector normal to the plane defined by the reference point (vector r) and vector a, such that c 
= r  a.

Angle θ3 is the angle (expressed in degrees) between the vectors c and t.  The vector c and the angle θ3 are 
used when the target point is on the same meridian as the reference point, to differentiate between a bear-
ing of 0° (north) or 180° (south) from the reference point to the target point.  If θ3 is less than 90°,  the 
target point is north of the reference point.  If θ3 is equal to 90°,  the target point is either coincident with 
the reference point or 180° from the reference point, in which case the bearing from the reference point to 
the target point is undefined.  For simplicity, when θ3=90°, we set the bearing to 0°.

In Mathematica, the user-defined module findAzimuthVectInput[] acts on the unit location vectors of a 
reference point and a target point in the Cartesian geographic coordinate system, yielding the azimuth 
(in degrees) from the reference point to the target point.

findAzimuthVectInput[refPtVect_, otherPtVect_] :=

Module[{northPole, vectorA, vectorB, θ1, θ2, vectorC, θ3, azimuth},

northPole = {0, 0, 1};

vectorA = Cross[northPole, refPtVect];

vectorB = Cross[otherPtVect, refPtVect];

θ1 = VectorAngle[vectorA, vectorB] (180 / π);

θ2 = VectorAngle[vectorA, otherPtVect] (180 / π);

vectorC = Cross[refPtVect, vectorA];

θ3 = VectorAngle[vectorC, otherPtVect] (180 / π);

azimuth = If[((θ2 == 90) ∨ (θ2 == 180)),

If[(θ3 <= 90), 0, 180], If[(θ2 > 90), (360 - θ1), θ1]];

azimuth ];

Similarly, the user-defined module findAzimuthGeogInput[] acts on the geographic coordinates of a 
reference point and a target point, yielding the azimuth (in degrees) from the reference point to the 
target point.
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findAzimuthGeogInput[refPtLat_, refPtLong_, otherPtLat_,

otherPtLong_] := Module[{refPtVect, otherPtVect,

northPole, vectorA, vectorB, θ1, θ2, vectorC, θ3, azimuth},

refPtVect = {Cos[refPtLat Degree] Cos[refPtLong Degree],

Cos[refPtLat Degree] Sin[refPtLong Degree], Sin[refPtLat Degree]};

otherPtVect = {Cos[otherPtLat Degree] Cos[otherPtLong Degree],

Cos[otherPtLat Degree] Sin[otherPtLong Degree],

Sin[otherPtLat Degree]};

northPole = {0, 0, 1};

vectorA = Cross[northPole, refPtVect];

vectorB = Cross[otherPtVect, refPtVect];

θ1 = VectorAngle[vectorA, vectorB] (180 / π);

θ2 = VectorAngle[vectorA, otherPtVect] (180 / π);

vectorC = Cross[refPtVect, vectorA];

θ3 = VectorAngle[vectorC, otherPtVect] (180 / π);

azimuth = If[((θ2 == 90) ∨ (θ2 == 180)),

If[(θ3 <= 90), 0, 180], If[(θ2 > 90), (360 - θ1), θ1]];

azimuth ];

Exercise 2.4 (HW-04)  What is the azimuth from Neenach in southern California (34°44’24”N, 
118°37’24”W) in the direction of the shortest straight-line path to Pinnacles in west-central California 
(36°29’13”N, 121°10’01”W).  The azimuth of a bearing is measured in a clockwise direction relative 
to true north.  
     Write a Mathematica notebook that analyzes the input data to complete the following tasks.
     (a) Convert the given geographic coordinates of Neenach and Pinnacles to decimal geographic 
coordinates (see section 2.2.3).
     (b) Convert the decimal geographic coordinates to unit location vectors (locVectNeenach and locVec-
tPinnacles), recalling that south latitudes and west longitudes are negative numbers (see section 2.2.3).
     (c) Determine the circumferential distance of the shortest great-circle path from Neenach to Pinna-
cles (see section 2.3.4).   
     (d) Determine the azimuth of the shortest great-circle path from Neenach to Pinnacles (see section 
2.4.3).
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