faults

A fault is a surface or zone along which there has been shear displacement.

normal faulting near Convict Lake, eastern Sierras/Owens Valley, California

Fault offset of glacial moraines

Little Cottonwood Creek near Salt Lake City, Utah

fault-surface features

slickenside (fault slip surface)

slickenlines

slickenlines I shear striae (scratches)

slickenlines I shear striae (scratches) 2 grooves

slickenlines

- I shear striae (scratches)
- 2 grooves
- 3 slickenfibers (vein-fill within fault)

sense of slip I strike-slip: slip is horizontal or parallel to strike

Strike-slip faults

- I strike-slip
 - left-lateral
 - right-lateral

- I strike-slip
- 2 dip-slip: slip is perpendicular to strike, parallel to dip

- I strike-slip
- 2 dip-slip
- normal: hanging-wallblock moves down-dip

Normal faults

Extension and Rifting

Normal faults result from stretching of the crust

- I strike-slip
- 2 dip-slip
 - normal
- reverse: hanging-wallblock moves up-dip

Reverse faults

Compression and Thrusting

Reverse faults result from shortening of the crust

- I strike-slip
- 2 dip-slip
- 3 oblique-slip: has components of strike-slip and dip-slip motion

- I strike-slip
- 2 dip-slip
- 3 oblique-slip

A transform fault is a plate-boundary fault along which the plates move (approximately) parallel to the fault, relative to each other.

