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Explaining terms...

Y
Points In a rigid body maintain their /\b

Initial angular and distance relationships
with one another over time. AC o

Ab. Points in a body do not
a’ A maintain their initial angular and distance

AC' relationships to one another over time.



The Global Geoscience Tribes in Early 1957

Ocean Basin

Age Exemplars

Tribe Crustiis... ‘

entire crust (and | ocean basins | AAPG, Birch,

Lo mantle) is rigid are old Jeffries
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The Global Geoscience Tribes in Early 1957

Ocean Basin

Age Exemplars

Tribe Crustiis... ‘

entire crust (and | ocean basins | AAPG, Birch,

Fiists mantle) is rigid are old Jeffries

Wegener,
duloit,
Europeans

Continental | continental crust insufficient
Drifters IS rigid-elastic data




The Global Geoscience Tribes in Early 1957

Ocean Basin

Age Exemplars

Tribe Crustiis... ‘

entire crust (and | ocean basins | AAPG, Birch,

Fiists mantle) is rigid are old Jeffries

Wegener,
dulolt,
Europeans

Continental | continental crust insufficient
Drifters IS rigid-elastic data

Expanding | continental crust | ocean basins | S. Warren
Earthers Is rigid-elastic are young Carey




Figure 111—Perry’s computer output from program to shrink the Earth step by step while maintaining the areas of the continents.

S. Warren Carey, 2000



The Global Geoscience Tribes in Early 1957

Ocean Basin

Age Exemplars

Tribe Crustiis... ‘

entire crust (and | ocean basins | AAPG, Birch,

Fiists mantle) is rigid are old Jeffries

Wegener,
dulolt,
Europeans

Continental | continental crust insufficient
Drifters IS rigid-elastic data

Expanding | continental crust | ocean basins | S. Warren
Earthers Is rigid-elastic are young Carey

Contracting | continental crust | ocean basins Byerly,
Earthers IS rigid-elastic are old Jeffries




Contraction of the earth

Most theories of the origin of the earth assume that 1t
has cooled from a molten mass. It is now solid, that 1s,
possesses rigidity, at least as deep as 1ts core at (lopth 2,900
kilometers, as is shown by the free transmission of shear
waves to this depth. (The radius of the earth 1s about
6,370 kilometers.) Cooling of a mass as large as the earth
1s a slow process.

1t 1s apparent
that the temperature is considerably higher below the crust
than in it, and a failure of strength in rocks below the
crust would not be surprising, although 1t 1s not known as
yet how far the effect of higher temperature tow: ard low ering
the strength is counteracted by the effect of the high pres-

sures toward increasing the strength.
Perry Byerly, 1942, Seismology, p. 41 & 43
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ten years later...
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strength of Sleaford Bay clinopyroxenite tested in triaxial compression. (After Kirby, 1980.)
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The Global Geoscience Tribes in Late 1967

Ocean Basin

Age Exemplars

Tribe Crust is... ‘

entire crust (and | ocean basins AAPG

PEREES mantle) is rigid are old

cean basins are | Bullard, Hess,
young (<~190 Wilson, Dietz,

Myr) and change P,Ttharp’ I\o/lazorl:,
over time tman, Lpayxe,

Crust (continental and O
oceanic) and rigid-
Plate elastic uppermost
. s mantle form Morley, Vine
. . through ’ -
lectonicists lithospheric plates .9 Morgan, McKenzie,
subduction and L ePichon. C
that move across seafloor erichon, LOxX,

; : Sykes, Heirtzler,
ERAITR SUFace. spreading. Oliver, Isacks




Plate tectonics was a major paradigm
shift In the solid-Earth geosciences.

I'nis was a profound revolution that
led to great progress in our
understanding of Eartn.
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A new scientific truth does not triumph by
convincing its opponents and making them
see the light, but rather because its
opponents eventually die, and a new
generation grows up that is familiar with it.

Max Planck
A Scientific Autobiography



The difficulty lies not so much
IN developing new ideas as In
escaping from old ones.

John Maynard Keynes



INCORPORATED RESEARCH INSTITUTIONS FOR SEISMOLOGY

3 + 2
Plate BOlUndaries

What are the tectonic (lithospheric) plates?

WWW.Iris.edu/earthquake



Plate tectonics was clearly defined as a
kinematic theory, one that is concerned with

geometry. It is not a dynamic theory: one
that is concerned with the driving forces.

Dan McKenzie, 2001
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The fit of the continents
around the Atlantic.

by Edward Bullard,
J.E. BEverett and
A. Gilbert Smith

Philosophical Transactions of the
Royal Society, London, no. 1088,
1965




Fit of South America and Africa by rotation around the total-opening Euler axis/pole

McKenzie, 2001, after Bullard et al., 1965



Allan Cox



Postulate 1: [Lithospheric] plates are internally rigid
but are uncoupled from each other. At their boundaries
two plates may pull apart or slip one beneath the other,
but within the plates there is no deformation.

Allan Cox, 1973



For me, the central idea Is the rigidity
of plate interiors. It is this property that
allows the surface motions of the Earth
to be described by so few parameters.

Dan McKenzie, 2001
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First Generation Current Generation

1885 Benz Motorwagen 2024 Honda Prologue EV
gasoline engine, 0.8 hp electric engine, 288 hp



Utah

Arizona

GPS velocity
vectors relative
to the NAM14

reference frame
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' Zeng, 2022



We now know that there are places on
Earth where the crust of the plate
Interior IS deforming.

Other places, the crust of the plate
Interior Is essentially rigid.

Postulate 1 I1s not universally valid.



Postulate 1: [Lithospheric] plates are internally rigid
but are uncoupled from each other. At their boundaries
two plates may pull apart or slip one beneath the other,
but within the plates there is no deformation.

Postulate 2: The pole of relative motion between a
pair of plates remains fixed relative to the two plates for
long periods of time.

Allan Cox, 1973



Fit of South America and Africa by rotation around the total-opening Euler axis/pole

McKenzie, 2001, after Bullard et al., 1965



It seems to me unlikely that plate
tectonics will require changes. Itis a
precisely formulated theory that
provides an accurate description of
the large-scale tectonics of the earth.

Dan McKenzie, 2001



We have knowhn since ~1969 that the
pole of relative motion between a pair
of plates cannot remain fixed relative
to the two plates.

Allan Cox called this the three-plate
problem. (More about this later.)



Postulate 1: [Lithospheric] plates are internally rigid
but are uncoupled from each other. At their boundaries
two plates may pull apart or slip one beneath the other,
but within the plates there is no deformation.

Postulate 2: The pole of relative motion between a
pair of plates remains fixed relative to the two plates for
long periods of time.

Allan Cox, 1973



Jonathan Kritz
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SRTM15PIlus map

of Earth’s topography
and bathymetry

Incorporates results from
Shuttle Radar Altimetry,
satellite laser altimetry,

shipborne sonar and
multibeam surveys, and
land surveys.

0
Elevation (km) Tozer et al., 2019, Fig. 4
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Hasterok et al., 2022, Fig. 4
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Age of Oceanic Crust [m.yrs.] Seton et al., 2020, Fig . 1b
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oceanic age-depth database
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Richards et al., 2018, Fig . 8a



Richards et al., 2018, Fig . 1c
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Richards et al., 2018, Fig . 1c
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Mean Tomographically Determined Lithospheric Thickness Model
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Steinberger and Becker, 2016, Fig . 7
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Reprise

Using site velocities from 3 GPS stations to
measure crustal strain
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Input Data File for

GPS-strain-calculator-InputCSV-20240918.nb
(a Mathematica notebook)

RecNo Station Long Lat RefFrame  E-vel N-vel E-uncert N-uncert Sources
1 P395 -123.85753 45.02228 NAM14  7.021 10.76 0.203 0.177 http://geoc
2 P396 -123.82289 45.30951 NAM14  7.269 10.74 0.249 0.175 http://geoc
3 P404 -123.39033 45.15853 NAM14  5.137 9.406 0.146 0.214 http://geoc

Data Sources for Station P395

http://geodesy.unr.edu/NGLStationPages/stations/P395.sta
https://www.unavco.org/instrumentation/networks/status/nota/overview/P395
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Evaluation Cell Style Cells Text Insert Notebook
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GPS-strain-calculator-InputCSV-20240918.nb

Code to determine the 2-D (horizontal) instantaneous or infinitesimal strain from velocity or displacement data from 3 adjacent-and-
non-colinear GNSS stations

Coded in Mathematica 8 by Vince Cronin with help from Phil Resor, circa 2012. Note that this version uses the formula employed by Corné Kreemer to compute the second invariant of the strain-rate tensor (e.g.,
Kreemer et al., 2014).

This version is coded in Mathematica (Wolfram) 14.1, and was revised 18 September 2024.

About the input data set

GPS site location and velocity data can be obtained from the Nevada Geodetic Laboratory at the University of Nevada-Reno (http://geodesy.unr.edu/NGLStationPages/gpsnetmap/GPSNetMap_MAG.html).
Resources include geodetic data from the MAGNET and NOTA networks, as well as other networks worldwide. As of late 2021, this is the current-best resource for obtaining high-quality GPS data worldwide.

(Data from the Network of the Americas -- the old Plate Boundary Observatory GPS network and a Caribbean network operated by UNAVCO -- are available online through the good work of UNAVCO via
http://www.unavco.org/instrumentation/networks/status/pbo/gps)

This version of the GPS strain calculator was written to analyze velocity data derived from a comma-separated-value (CSV) file. The input dataset can be created in a text editor, saved as a text file, then
substitute “.csv” for “.txt” to make it recognizable as a CSV file.

Each line (record) of the CSV input data file for this strain calculator has 10 items, corresponding to 10 columns in a flat file or matrix:
column 1: record number in the fullDataSet
column 2: 4-letter text code for station
column 3: longitude -- +ve is east, -ve is west
column 4: latitude -- +ve is north, -ve is south
column 5: reference frame for GPS site velocity data
column 6: east velocity in mm/yr -- +ve is toward east, -ve is toward wesd
column 7: north velocity in mm/yr -- +ve is toward north, -ve is toward south
column 8: uncertainty of east velocity in mm/yr
column 9: uncertainty of north velocity in mm/yr
column 10: data source

- - s A ’ " [ s e . . . . ] L .
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Earth's surface includes areas that
pbehave as rigid plates, and other
areas away from plate boundaries that
actively deform. [hese are “non-plate
areas.”
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