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8.1  Introduction
In  the  genesis  story  of  plate  kinematics,  the  continental  reconstruction  paper  of  Bullard,  Everett  and Smith
(1965) introduced the idea of an Euler pole, named for Leonhard Euler who originated what has come to be
called the fixed-point theorem for motion of a spherical shell over a sphere (Euler, 1776).  We worked with
Euler  poles  or  poles  of  rotation  in  the  previous  4  chapters.   The  paper  of  McKenzie  and  Parker  (1967)
introduced  the  idea  of  the  angular  velocity  vector,  also  known  as  a  rotation  vector  or  an  axial  vector.
McKenzie  and  Morgan  (1969)  further  developed  the  idea,  and  McKenzie  and  Slater  (1971)  used  the  basic
ideas of spherical kinematics to investigate the opening of the Indian Ocean and the breakup of Gondwanan-
land.   By  1973  when  LePichon,  Francheteau  and  Bonnin  published  their  textbook  Plate  Tectonics  and  Allan
Cox published his compilation of key papers, the first-generation understanding of plate kinematics had been
established.   Just  before his  death,  Cox published a textbook in which he attempted an elementary explana-
tion of that first-generation kinematic model (Cox and Hart, 1986).  

In this chapter, we will work to understand the basics of angular velocity vectors in the context of 2+ and 3-
plate systems.  In a 2+plate system, we observe the motion of two plates relative to each other and relative to
a frame of reference external  to the two plates.   In a  3-plate  system, we observe the motion of three plates
relative to each other.  We will leave this chapter armed with what we need to know to understand the basic
kinematics of a tectonic system that includes any number of more-or-less rigid plates.  

8.2  A user-defined function
We will use the following user-defined function developed in a previous chapter.

In[1]:= convert2Cart@lat_, long_D := 8Cos@lat DegreeD Cos@long DegreeD,
Cos@lat DegreeD Sin@long DegreeD, Sin@lat DegreeD<;

8.3  Instantaneous kinematics in a 3-plate system

Quick reminder about vector arithmetic
First, let’s get our arrow nomenclature straight, given that we use arrows to visualize vectors.  The pointy end
of an arrow is called the tip or head, and the other end with the feathers is called the nock. 

Consider two vectors, a and b, as shown in Figure 8-1.  Positive vector a points in one direction, and negative
vector  a  has  the  same  magnitude  (length)  but  points  in  the  opposite  direction,  180°  away  from a.   Conse-
quently, the sum a + (-a) = 0.  The sum of vectors a and b is vector c, and is visualized by touching the tip
of vector a to the nock of vector b.  Vector c extends from the nock of vector a to the tip of vector b.  The
result  of  subtracting  vector  b  from  vector  a  is  equivalent  to  adding  vector  -b  to  a,  yielding  vector  d.
Following the same logic, vector e is the difference between b and a,  and vector f is the difference between
-b and a.
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Consider two vectors, a and b, as shown in Figure 8-1.  Positive vector a points in one direction, and negative
vector  a  has  the  same  magnitude  (length)  but  points  in  the  opposite  direction,  180°  away  from a.   Conse-
quently, the sum a + (-a) = 0.  The sum of vectors a and b is vector c, and is visualized by touching the tip
of vector a to the nock of vector b.  Vector c extends from the nock of vector a to the tip of vector b.  The
result  of  subtracting  vector  b  from  vector  a  is  equivalent  to  adding  vector  -b  to  a,  yielding  vector  d.
Following the same logic, vector e is the difference between b and a,  and vector f is the difference between
-b and a.

Figure 8-1.  Visualization of some simple arithmetic operations using vectors.

Let’s code-up a few vectors and make sure we understand what is going on.  First, we will initialize or define
an arbitrary vector called a.

In[2]:= a = 81, 2, 3<;

The components of the negative of vector a (that is, of -a) should be the negative values of the components
of vector a.

In[3]:= -a

Out[3]= 8-1, -2, -3<

The same should be true of an arbitrary vector b and its negative, -b.

In[4]:= b = 82, 3, 4<;

In[5]:= -b

Out[5]= 8-2, -3, -4<

When two vectors are added together, the sum is formed by adding their respective components together.  

That is, a + b = {(a[[1]]+b[[1]]), (a[[2]]+b[[2]]), (a[[3]]+b[[3]])].

In[6]:= a + b

Out[6]= 83, 5, 7<

And when one vector is subtracted from another, the difference is formed by subtracting the corresponding
components.  

That is, a - b = {(a[[1]]-b[[1]]), (a[[2]]-b[[2]]), (a[[3]]-b[[3]])].

In[7]:= a - b

Out[7]= 8-1, -1, -1<

Linear velocity vector circuits
Imagine  that  you  are  no  longer  your  usual  corporeal  self,  but  rather  a  point  in  space.   Your  name  is  A.
Nearby, you notice two other distinct points B and C, whose positions are such that the three of you are not
located  on  the  same  line  (Figure  8-2).   You  notice  that  these  two  other  points  are  moving  in  different
directions  relative  to  you.   At  any  instant  in  time,  you can  specify  a  vector  that  describes  the  instantaneous
motion of point B relative to you:  AVB.  
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Imagine  that  you  are  no  longer  your  usual  corporeal  self,  but  rather  a  point  in  space.   Your  name  is  A.
Nearby, you notice two other distinct points B and C, whose positions are such that the three of you are not
located  on  the  same  line  (Figure  8-2).   You  notice  that  these  two  other  points  are  moving  in  different
directions  relative  to  you.   At  any  instant  in  time,  you can  specify  a  vector  that  describes  the  instantaneous
motion of point B relative to you:  AVB.  

(I  am  using  the  same  nomenclature  that  McKenzie  and  Parker  used  in  1967,  which  has  the  form
frame of referenceVmoving object.  While this should be the convention used by all in plate kinematics, sadly it seems

that different workers have used different and sometimes opposite nomenclature.  Beware!)

Meanwhile,  your  friend  on  point  B  also  notices  the  motion  of  points  A  and  C  relative  to  her  frame  of
reference.   Relative  to  point  B,  point  A  has  an  instantaneous  velocity  of  BVA,  and  point  C’s  instantaneous
velocity is BVC.  And on point C, the instantaneous velocity of point A is CVA, and point B is moving at a rate
of CVB.  

It is probably obvious that the vector for the instantaneous velocity of point B as observed from point A is
equal  in  magnitude  but  opposite  in  direction  from  the  vector  for  the  instantaneous  velocity  of  point  A  as
observed from point B.  That is,   

   |AVB| = |BVA|  and  AVB = –BVA

And it follows that    

   |BVC| = |CVB|  and  BVC = –CVB

   |AVC| = |CVA|  and  AVC = –CVA

Figure 8-2.   One of  an infinite  number of  vector  scenarios  involving three points  (A,  B and C) that  are  in
motion relative to each other at an instant in time.  The instantaneous relative motion vectors defined at each
point are shown at left, and a corresponding closed vector circuit is shown at right.

If you pooled your observations with your friends on points B and C for a given instant, you would discover
that    

   AVB + BVC + CVA = 0

and all three instantaneous velocity vectors would lie on plane ABC.  Given this scenario of relative velocities
defined at three points at an instant in time, the only reason the velocities would not sum to zero is if one or
more of the velocities is not accurate.    

A set of vectors that sums to zero is called a closed vector circuit, and the vectors in this particular circuit can
be envisioned as forming the sides of a triangle.  A triangle formed by three line segments (as contrasted with
a spherical triangle) is a plane figure, meaning that all of its elements are contained within a specific plane.  If
the three vectors did not achieve closure, they would not necessarily be coplanar.  If the three vectors are not
coplanar, they cannot achieve closure.    

Take three sharpened pencils as analogs for our vectors.  Place the pencils point-to-eraser so that they form a
closed triangle on the table top (Figure 8-3A).  The vertices of the pencil triangle are the three points that are
moving with respect  to one another.   This configuration of pencils  is  like our equation above,  in which the
three vectors sum to zero.  They achieve closure.    
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Take three sharpened pencils as analogs for our vectors.  Place the pencils point-to-eraser so that they form a
closed triangle on the table top (Figure 8-3A).  The vertices of the pencil triangle are the three points that are
moving with respect  to one another.   This configuration of pencils  is  like our equation above,  in which the
three vectors sum to zero.  They achieve closure.    

Figure 8-3.  Pencils serving as analogs for vectors.  (A) Closed vector circuit.  (B) Coplanar vectors that do
not form a closed vector circuit.  (C) Non-coplanar vectors cannot form a vector circuit.

Now, move the pencils while still on the table so that the three pencils are still touching point-to-eraser in two
places,  but  create  a  gap  where  the  third  vertex  had  been  (Figure  8-3B).   Here,  the  three  pencils  are  still
coplanar,  but there is not closure.   Having a gap like that would not make sense,  because the eraser on one
pencil  and  the  point  on  the  other  pencil  across  the  gap  correspond  to  the  same  point,  not  two  points
separated by a gap.      

Now rotate one of the pencils adjacent to the opening and lift one end so that it is not touching the table, but
its  other end is  still  touching the next pencil  (Figure 8-3C).   This models three non-coplanar vectors,  which
cannot achieve closure.  Again, what should be one point is two points separated by a gap.  In order for three
vectors to be part of a closed vector circuit, they must be coplanar.    

One of the important realizations related to a vector circuit is that if you only know two of the vectors, the
third vector can be computed.   So imagine that  you know the velocity  of point B from your vantage point,
point B reports the velocity of point C from her vantage point, but there is a fog that obscures point C from
you.  The unknown velocity is given by    

   AVB + BVC = AVC

This makes sense, because if we add CVA to both sides of the previous equation, we get

   (AVB + BVC) + CVA = (AVC) + CVA

and

   AVC + CVA = 0

because

AVC = –CVA
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which returns us to

   AVB + BVC + CVA = 0

Angular velocity vector circuits
In the last several chapters, we have worked with the idea of rotating a point or a set of points around an
axis.  In plate kinematics using a spherical model Earth, the axis of rotation passes through the center of the
sphere and intersects the outer surface of the sphere at points we call poles.  The positive pole corresponds
to  a  right-handed  rotation  as  observed  looking  down  on  the  surface  of  the  sphere.   We  will  define  an
angular velocity vector as a vector whose magnitude is the angular speed, whose direction is colinear with
the rotation axis, and whose sign is determined by the right-hand convention.  McKenzie and Parker (1967)
explained  it  differently,  but  equivalently,  as  follows:   “The  sign  convention  takes  a  rotation  which  is
clockwise when looked at from the centre of the sphere to be a positive vector which is pointing outward
along the rotation axis.”

The  instantaneous  kinematics  of  any  three-plate  system is  governed  by  three  angular-velocity  vectors.   Like
their  linear-motion counterparts,  the three angular  velocity  vectors  are  coplanar,  and have a  simple relation-
ship with each other given by

   AWB + BWC + CWA = 0

where  we will  generally  use  the  capital  omega  (W)  to  indicate  the  full  angular-velocity  vector  and the  small-
case  omega  (w)  to  indicate  angular  speed  --  the  magnitude  of  the  angular  velocity  vector.   Just  as  with  the
linear velocity vectors, the instantaneous angular velocity vectors form a vector circuit.  And as with the linear
velocity vectors, if you know two of the angular velocity vectors, you can compute the third.

Extending a location vector along a given angular velocity vector, we identify a point on Earth’s surface called
the pole.  And so, if we find a location vector coincident with AWB, we might refer to that pole symbolically
as APB, meaning the pole around which plate B rotates in a positive (counter-clockwise) direction as observed
from plate A

The  origin  of  all  three  angular  velocity  vectors  is  the  same:   the  center  of  our  model  Earth.   Hence,  the
intersection of the plane that contains all three angular velocity vectors and the surface of our spherical model
Earth is a great circle.  This leads us to one of the more important observations in plate kinematics:  the three
poles of instantaneous relative motion for any 3-plate system are located on the same great circle.  But where,
relative to each other?

Let’s  work  on  this  problem  of  where  the  poles  are  for  a  given  three-plate  system  by  considering  relative
motions at the simplest location to do so:  at one of the two points that are 90° away from the great circle.
As we saw in the last chapter, it is easy to compute the tangential velocity and direction of motion at a point
that  is  90° away from a pole.   We can make the process  even easier  if  we specify  a  model  Earth that  has  a
radius of 1.  (One what, you ask?  The unit we are using is an Earth radius (RE), which is equivalent to ~6371
km).

Imagine three plates, labeled A, B and C, with the following instantaneous kinematic data.

Frame of Reference Moving Plate Angular Speed I°ëMyrM Pole Location ILat, LongM

A B 0.852 -48.77, 106.09
B C 2.208 38.72, -107.39
C A 1.489 -29.80, 58.72
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On a model Earth with a radius of 1, the tangential velocity of plate B relative to plate A at a point that is 90°
from the pole (AVB) is equal to 0.852 RE.   

AVB = 0.852 RE

Similarly,

BVC = 2.208 RE
CVD = 1.489 RE

All  of  the  velocities  are  defined  at  the  same  point,  and  all  are  tangential  to  our  spherical  model  Earth.
Consequently, all of these velocity vectors are coplanar.  We know that the corresponding vector circuit must
be closed

   AVB + BVC + CVA = 0

so we can visualize the problem by creating a triangle that  has sides with lengths of 0.852,  2.208 and 1.489,
corresponding to AVB,  BVC  and CVA,  respectively (Figure 8-4).  The angle between the sides with lengths of
0.852 and 2.208 is related to the angle between AVB and BVC, and hence related to the angle between AWB and
BWC .   The angle  between AWB  and BWC  is  the same as  the angle between the corresponding two rotational
poles, APB  and BPC,  along the great circle.  So it seems that the instantaneous angular speeds (the unsigned
magnitudes  of  the  instantaneous  angular  velocity  vectors)  determine  the  relative  positions  of  the  poles  of
instantaneous rotation.

Figure 8-4.  Instantaneous vector relationships for a given 3-plate system.  (A) Triangle with sides scaled to
the  angular  speeds.   (B)  Tangential  velocity  vectors  forming  a  closed  vector  circuit.   (C)  Positive  angular
velocity  vectors  forming a closed vector circuit.   (D) Spatial  relationship of positive angular  velocity  vectors
and  tangential  velocity  vectors  at  a  point  located  90°  from  the  poles  of  rotational  motion.   Each  angular
velocity vector is perpendicular to the corresponding tangential velocity vector.

So what are these interior angles, given sides with lengths of 0.852, 2.208 and 1.489?  We can use a form of
the cosine law from trigonometry to find the interior angles.  For a triangle with sides whose lengths are a, b
and c and whose interior angles are a (angle opposite side a and between sides b and c), b (angle opposited
side b...) and g (angle opposite side c...), the corresponding equations are

a = arccos ( b
2 + c2 - a2

2 b c
)
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b = arccos ( a
2 + c2 - b2

2 a c )

g = arccos ( a
2 + b2 - c2

2 a b
)

Let’s code it up and get some results, expressed in degrees.

In[8]:= a = 0.852; b = 2.208; c = 1.489;

In[9]:= a = ArcCosAIb2 + c2 - a2M ë H2 * b * cLE ë Degree

Out[9]= 14.4826

In[10]:= b = ArcCosAIa2 + c2 - b2M ë H2 * a * cLE ë Degree

Out[10]= 139.601

In[11]:= g = ArcCosAIa2 + b2 - c2M ë H2 * a * bLE ë Degree

Out[11]= 25.9167

The data table above contains data from the RM2 model of Minster and Jordan (1978), which was the most
widely used kinematic dataset until the publication of the Nuvel-1 model by Demets and others in 1990.  Let’s
see how our results agree with the angular distance between the RM2 poles.

In[12]:= aPoleB = convert2Cart@-48.77, 106.09D;

In[13]:= bPoleC = convert2Cart@38.72, -107.39D;

In[14]:= cPoleA = convert2Cart@-29.80, 58.72D;

The angle between the BPC pole and the CPA pole is

In[15]:= bPc2cPa = VectorAngle@bPoleC, cPoleAD ê Degree

Out[15]= 165.491

Between the APB pole and the CPA pole, the angle is

In[16]:= aPb2cPa = VectorAngle@aPoleB, cPoleAD ê Degree

Out[16]= 40.4383

And the angle between pole BPC and pole APB is

In[17]:= bPc2aPb = VectorAngle@bPoleC, aPoleBD ê Degree

Out[17]= 154.071

It is probably worthwhile to notice the following:

In[18]:= a + bPc2cPa

Out[18]= 179.974
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In[19]:= b + aPb2cPa

Out[19]= 180.039

In[20]:= g + bPc2aPb

Out[20]= 179.987

We previously asserted that the angles inside the vector triangle are related to the angles between the poles,
and  also  to  the  angles  between  the  angular  velocity  vectors.   In  the  case  we  have  investigated,  the  interior
angles  of  the  plane  triangle  are  the  supplementary  angles  of  the  angles  between the  poles.   (Two angles  are
supplementary if they sum to 180°.)  That is, the angle between BPC and CPA is (180 - a).  Let’s check.

In[21]:= bPc2cPa

Out[21]= 165.491

In[22]:= 180 - a

Out[22]= 165.517

In[23]:= mismatch1 = Abs@bPc2cPa - %D

Out[23]= 0.026464

What about the rest?

In[24]:= aPb2cPa

Out[24]= 40.4383

In[25]:= 180 - b

Out[25]= 40.3993

In[26]:= mismatch2 = Abs@aPb2cPa - %D

Out[26]= 0.0390307

In[27]:= bPc2aPb

Out[27]= 154.071

In[28]:= 180 - g

Out[28]= 154.083

In[29]:= mismatch3 = Abs@bPc2aPb - %D

Out[29]= 0.0125667

Based on the mismatches computed above, the published answers and our computed answers agree within a
tenth  of  a  degree.   We  conclude  that  the  relative  positions  of  the  three  positive  poles  of  instantaneous
rotation for any three-plate system are controlled by the corresponding angular speeds.  As each negative pole
of  rotation  is  the  antipode  of  a  positive  pole  (that  is,  it  is  180°  away  from  the  positive  pole),  the  relative
position  of  all  of  the  poles  of  instantaneous  rotation  for  any  three-plate  system  are  determined  by  the
respective angular speeds.
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Based on the mismatches computed above, the published answers and our computed answers agree within a
tenth  of  a  degree.   We  conclude  that  the  relative  positions  of  the  three  positive  poles  of  instantaneous
rotation for any three-plate system are controlled by the corresponding angular speeds.  As each negative pole
of  rotation  is  the  antipode  of  a  positive  pole  (that  is,  it  is  180°  away  from  the  positive  pole),  the  relative
position  of  all  of  the  poles  of  instantaneous  rotation  for  any  three-plate  system  are  determined  by  the
respective angular speeds.

Boiling out the fat to solve another demonstration problem
Given the following data from the RM2 model of Minster and Jordan (1978), derive the angles between the
poles from the angular velocity data, and check the results against the published pole locations.

Frame of Reference Moving Plate Angular Speed I°ëMyrM Pole Location ILat, LongM

A B 0.356 66.56, -37.29
B C 0.149 -9.46, 138.30
C A 0.302 -87.69, -104.80

In[30]:= awb = 0.356;

In[31]:= bwc = 0.149;

In[32]:= cwa = 0.302;

In[33]:= aPb = convert2Cart@66.56, -37.29D;

In[34]:= bPc = convert2Cart@-9.46, 138.30D;

In[35]:= cPa = convert2Cart@-87.69, -104.80D;

In[36]:= a = ArcCosAIbwc2 + cwa2 - awb2M ë H2 * bwc * cwaLE ë Degree;

In[37]:= b = ArcCosAIawb2 + cwa2 - bwc2M ë H2 * awb * cwaLE ë Degree;

In[38]:= g = ArcCosAIawb2 + bwc2 - cwa2M ë H2 * awb * bwcLE ë Degree;

In[39]:= bPc2cPa = 180 - a;

In[40]:= VectorAngle@bPc, cPaD ê Degree;

In[41]:= mismatch1 = Abs@bPc2cPa - %D

Out[41]= 0.109555

In[42]:= aPb2cPa = 180 - b;

In[43]:= VectorAngle@aPb, cPaD ê Degree;

In[44]:= mismatch2 = Abs@aPb2cPa - %D

Out[44]= 0.039637

In[45]:= aPb2bPc = 180 - g;

In[46]:= VectorAngle@aPb, bPcD ê Degree;

In[47]:= mismatch3 = Abs@aPb2bPc - %D

Out[47]= 0.149193
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Judging from the mismatches computed above the computed angles between the poles is within ~0.1° of the
published angles.  The computed angle (in degrees) between the APB pole and the BPC pole is 

In[48]:= aPb2bPc

Out[48]= 122.97

Between the BPC pole and the CPA pole, the angle is

In[49]:= bPc2cPa

Out[49]= 81.4815

And the angle between pole CPA and pole APB is

In[50]:= aPb2cPa

Out[50]= 155.549

Why don’t  the data from Minster  and Jordan (1978) agree with our analysis  perfectly?   The primary reason,
among several, is that the RM2 model started with a variety of observations (transform fault positions/orienta-
tions,  data about sea-floor spreading from marine magnetic anomalies,  etc.)  of the sort we thought about in
chapter 6.  These input data have uncertainties, and so each angular velocity derived from them has uncertain-
ties.   Minster  and  Jordan  (1978,  following  Minster  and  others,  1974)  then  created  a  numerical  model  of
angular velocity data for 11 plates (Africa, Antarctica, Arabia, Caribbean, Cocos, Eurasia, India, Nazca, North
America, Pacific, South America), resulting in the 27 rotation poles reported in RM2.  Their final model was
an attempt to minimize uncertainties  across  these  many plates,  and the statistical  errors  they reported range
from 0.6° to almost 17°.  Subsequent models have expanded and improved the imput data, reduced uncertain-
ties and increased the number of plates considered, but it would be difficult to overstate how important the
RM2 model was in its day and what a significant achievement it was.

Exercise 8-1.  You have a three plate system in which AwB  = 0.583°/Myr, BwC  = 0.937°/Myr, and CwA
= 1.248°/Myr.  Write a brief Mathematica notebook to determine the angular distances between the three
poles APB, BPC and CPA.

Exercise 8-2.  You have been able to establish two instantaneous angular velocity vectors: AWB and BWC .
The  three  components  of  each  of  these  vectors  gives  information  about  their  orientation  in  space,  and
the  magnitude  of  the  vector  gives  information  about  the  angular  speed.   Write  a  brief  Mathematica
notebook  to  determine  the  instantaneous  velocity  vector  CWA.   Hint:   this  is  a  2-dimensional  triangle
problem.

8.4  Instantaneous kinematics in a 2+ plate system
A  definition  of  “2+plate  system”  is  in  order.   In  this  scenario,  we  have  two  plates,  A  and  B,  and  we  can
determine their instantaneous motion relative to each other:   AWB  corresponding to pole APB.   Instead of a
third  plate,  we  have  a  frame  of  reference  that  is  external  to  the  lithospheric  plate  system  in  which  the
instantaneous motion of plate A and plate B can be described:  EWA  and EWB.   The subscript “E” indicates
that the frame of reference for the angular velocity is external to the plate system.  A number of these external
frames of reference have been used or proposed over the years, including one or more mantle hot spots, the
no-net-rotation  reference  frame,  and  various  satellite  or  sidereal  solutions  (GPS,  Very  Long  Baseline
Interferometry, Satellite Laser Rangefinding, Lunar Laser Rangefinding, et cetera).  A very incomplete literature
references  for  various  external  reference  frames  are  collected  at  the  end  of  this  chapter  for  your  further
investigation,  and  the  review  paper  by  Blewitt  (2009)  is  an  excellent  source  of  information  about  GPS  and
space-based  geodetic  methods.   For  the  moment,  let  us  simply  say  that  an  external  reference  frame  exists
relative to which we can measure the instantaneous motion of our two plates.
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Interferometry, Satellite Laser Rangefinding, Lunar Laser Rangefinding, et cetera).  A very incomplete literature
references  for  various  external  reference  frames  are  collected  at  the  end  of  this  chapter  for  your  further
investigation,  and  the  review  paper  by  Blewitt  (2009)  is  an  excellent  source  of  information  about  GPS  and
space-based  geodetic  methods.   For  the  moment,  let  us  simply  say  that  an  external  reference  frame  exists
relative to which we can measure the instantaneous motion of our two plates.

The governing equation in this scenario is 

   AWB + BWE + EWA = 0

All  of  the  insights  gleaned  in  the  previous  section  apply  to  this  system.   The  poles  APB,  EPA  and  EPB  are
coplanar  with  the  center  of  the  spherical  model  Earth,  and  so  are  located  on  the  same  great  circle.   Their
relative  positions  are  a  function  of  the  corresponding  angular  speeds.   We  can  “fill-in”  a  missing  angular
velocity vector given the other two angular velocities because this must be a closed vector circuit.

We will have much more to say about 2+plate systems in the next chapter.

8.5  Implications for finite motion?
Allan  Cox  (1973,  p.  40-42)  asserted  that  the  two  fundamental  postulates  of  modern  plate  tectonics  are  as
follows:  “Postulate 1.  The plates are internally rigid but are uncoupled from each other”;  and “Postulate 2.
The pole of relative motion between a pair of plates remains fixed relative to the two plates for long periods
of time.”  Studies using geodetic GPS receivers have provided great insight into the limitations of Cox’s first
postulate,  demonstrating  that  the  western  part  of  North  America  along  with  other  plate-boundary  regions
worldwide are actively deforming and are not rigid (for example, see Kreemer and others, 2003).  Postulate 2
might work well in an imaginary 2-plate world like the one we played with in chapter 7, but does it work in a
3-plate world?

Judge  for  yourself.   Consider  a  system  that  seems  typical  of  the  current  plate  system  (DeMets  and  others,
2010)  in  which  the  angular  velocity  vectors  for  a  given  3-plate  system are  not  colinear.   That  is,  the  angles
between  the  poles  are  neither  0°  nor  180°.   The  angular  velocity  vectors  are  pointing  in  three  different
directions.  And let us further assume for the moment that the angular velocity vectors remain constant over
the finite time interval that we are interested in.  The angular velocity vectors are pointing in three different
directions  to  start  with,  and  they  remain  pointing  in  three  different  directions  over  time.   Can  a  rigid  plate
move in a circular trajectory around one axis of rotation over a finite time interval, and simultaneously move
around a different axis of rotation along a circular trajectory?  Can plate A rotate around BPA during the same
finite time interval in which it rotates around CPA?

What’s your answer?  

My answer is “no.”  In a 3-plate system in which AWB, BWC and CWA are non-zero and not colinear, no single
plate can move in a circular arc around two separate poles of rotation simultaneously, such that all points on
the plate remain the same distance from both of the poles.  A board nailed to the floor at both ends cannot
rotate around both nails at the same time.  A paint spot on a bicycle tire cannot rotate around two different
axles at the same time.  

Allan Cox referred to this as the 3-plate problem of plate tectonics (Cox, 1973, p. 408;  Cox and Hart, 1986,
p.  255-258).   His  view  of  an  approach  to  solve  the  problem  was  to  suggest  that  a  plate  pair  would  move
around their fixed pole “for awhile, then abruptly change direction and move along a slightly different” pole
(Cox, 1973, p. 411).  Indeed, Cox was aware of evidence for abrupt changes in the direction of relative plate
motion contained within the marine magnetic anomalies of the Pacific seafloor (Menard and Atwater, 1968),
but this really wasn’t a solution for the 3-plate problem.
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Allan Cox referred to this as the 3-plate problem of plate tectonics (Cox, 1973, p. 408;  Cox and Hart, 1986,
p.  255-258).   His  view  of  an  approach  to  solve  the  problem  was  to  suggest  that  a  plate  pair  would  move
around their fixed pole “for awhile, then abruptly change direction and move along a slightly different” pole
(Cox, 1973, p. 411).  Indeed, Cox was aware of evidence for abrupt changes in the direction of relative plate
motion contained within the marine magnetic anomalies of the Pacific seafloor (Menard and Atwater, 1968),
but this really wasn’t a solution for the 3-plate problem.

I met Allan Cox at the Geological Society of America annual meeting in 1986, just after he had published his
book  on  plate  tectonics/kinematics  with  Robert  Brian  Hart.   Cox  was  working  his  way  through  the  poster
session at which I presented the first description of my dissertation work (Cronin, 1986) in which I provided
a solution for the 3-plate problem.  After reading through my poster, I believe his first words were, “Damn, I
wish  I  had  known about  this  before  we  published  the  book!”   The  person  standing  next  to  him then  said,
“Cheer  up,  Allan.   There’s  a  good  excuse  for  a  second  edition.”   Cox  died  a  few  months  later,  and  his
kinematics book is still in print as I write this paragraph in 2012.

We will get to finite motion in future chapters.
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