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17.1  Introduction
I  begin  this  chapter  by  acknowledging  that  my  treatment  of  this  material  follows  that  of  Allmendinger,
Cardozo and Fisher (2012), to whom I owe an intellectual debt for writing such a clear text.

The  purpose  of  this  chapter  is  to  bring  you  to  the  point  at  which  you  can  estimate  the  2-dimensional
instantaneous strain rate between a set of 3 geodetic GPS stations.  This entails working on concepts as well
as code.  

17.2  Strain

One-dimensional strain
The idea of one-dimensional strain is the starting point for discussions of strain in physics, engineering, and
structural  geology  courses,  so  it  might  be  familiar  to  you.   If  so,  just  play  along  so  that  we  can  build  our
understanding from the ground up.

You have a lovely strip of elastic material like a broken rubber band.  This is a very special elastic strip -- the
sort that one dreams of in a physics class, along with frictionless surfaces and massless elephants.  Your elastic
strip has a perfectly linear-elastic rheology, so that it lengthens in exact proportion to the amont of force you
exert to pull on it.  And we can use the idea of force rather than stress because our imaginary elastic strip is
infinitely  thin.   So  displacement  is  a  linear  function  of  force  for  our  1-D  experiment.   With  all  of  those
limitations in mind, let’s move on.

Before you elongate the elastic strip, you paint a thin white band around it in a location that will serve as the
origin of our 1-dimensional coordinate system;  that is, its coordinate is defined as {0}.  You move down the
strip a little bit to your right and paint a thin blue band, and a little ways further down the strip you paint a
thin  red band.   The blue  band has  an initial  or  original  coordinate  of  xbo ,  and the  red band has  an original
coordinate of xro .  
Next, we stretch the rubber strip so that the distance from the origin to the new location of the thin red band
(xrn ) is twice the distance before stretching (xro).  That is,

xrn  = 2 xro

Thanks  to  all  of  the  restrictions  we  placed  on the  properties  of  the  elastic  strip,  we  can  reliably  predict  the
coordinates of the blue band after stretching.

xbn = 2 xbo
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In fact, we can specify the new location of any point r along the elastic strip (xrn) given its original location
(xro).

xrn = 2 xro

The process of expressing a new location in terms of an initial or original location is an example of a Green
transformation.  We use the word “transformation” in the sense of “coordinate transformation” -- determin-
ing the coordinates of a point relative to a different coordinate system.  

The number “2” in this example is called the deformation gradient or slope, which makes some sense because
our elastic strip has a linear elastic rheology.  Digging a little deeper, the difference between the initial distance
between any two points r and b on the strip, (xρo  - xbo) = Dxo, is proportional to the difference between the

new distance between those same two points, (xρn  - xbn) = Dxn .  The quotient of the final length divided by

the initial length is called the stretch (S) by structural geologists, so

S = final distance
initial distance

= 
Ixρn - xbnM

Ixρo - xboM
 = D xn

D xo
 = lim ¶∂xn

¶∂xo
 = 2

Hence, the stretch in our 1-D example is the same as the deformation gradient.  We can say that the deforma-
tion  gradient  is  homogeneous  in  our  example  because  it  is  constant  for  any  pair  of  points  along  the  linear-
elastic strip.  Although it was not strictly necessary in this example, the deformation gradient was expressed in
terms of partial derivatives using the ¶∂ symbol because we are trying to build a toolbox that will allow us to
account for deformation in 2 and 3 dimensions. 

Similarly, the original location can be expressed in terms of the new location using a Cauchy transformation,
so the inverse stretch (S-1) is

S-1 = initial distance
final distance

= 
Ixρo - xboM

Ixρn - xbnM
 = D xo

D xn
 = lim ¶∂xo

¶∂xn
 = 0.5

Another way to approach the analysis  is  to consider the displacement vectors for the red and blue markers.
The displacement vectors connecting the initial to the final positions of the red and blue markers are

ur  = xrn - xro

and

ub = xbn - xbo
A  displacement  vector  from  the  original  location  to  the  final  location  is  called  a  Lagrangian  displacement
vector.   The  gradient  or  slope  of  Lagrangian  displacement  vector  for  a  1-D  experiment  is  the  same  as  the
extension (e) that you might be familiar with from structural geology

e = 
Hfinal lengthL- Hinitial lengthL

initial length

In this instance,

e = 
difference between the lengths of two displacement vectors

difference between the lengths of two initial-location vectors

The difference between the lengths of two displacement vectors is

DuL = ur  - ub = (xrn - xro) - (xbn - xbo)

and the difference between the lengths of two initial-location vectors is

Dxo = xro - xbo
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so

e = Hur - ubL
Hxro - xboL

 = DuL
D xo

 = lim ¶∂uL
¶∂xo

The  inverse  of  this  process,  in  which  we  consider  the  displacement  vectors  relative  to  the  final  location
vectors, gives the Eulerian displacement vector, and its gradient is the inverse of the extension.

e-1 = 
difference between the lengths of two displacement vectors

difference between the lengths of two final-location vectors

e-1 = Hur - ubL
Hxrn - xbnL

 = D u
D xn

 = lim ¶∂u

¶∂xn

The stretch and the extension are scalar components of tensor quantities.

Three-dimensional strain
If  the  mental  image  we  worked  with  in  the  previous  section  was  that  of  an  elastic  string,  elongated  (or
shortened) in one dimension, we are now going to build on that experience to think of a continuous elastic
sheet that can be deformed in 3 dimensions.

Before we press on into 2- or 3-dimensional strain, we need to add to our understanding of matrices and, in
particular, the matrix representation of tensors.  In this square matrix,

A 0 0
0 B 0
0 0 C

the part of the matrix that has all of the capital letters (A, B, C) is called the diagonal or axis of the matrix.  It is
called a square  matrix  because it  has the same number of rows as columns.   Values that  are in the positions
occuppied by 0s are said to be off-axis  terms.  If the values above the diagonal are equal to the values below
and directly across the diagonal, like this

A d e
d B f
e f C

the  matrix  is  said  to  be  a  symmetric  matrix.   If  values  across  the  diagonal  from  each  other  have  the  same
magnitude but different sign, like 

A d e
-d B f
-e -f C

the matrix is said to be an antisymmetric matrix.  An asymmetric matrix, like 

A d e
g B h
n -f C

lacks at least some of the symmetries we have just mentioned.  Finally, if we define a matrix 

M =
A d e
g B h
n -f C

,

the transpose of matrix M is represented by MT  and is
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MT =
A g n
d B -f
e h C

,

so  the  values  along  the  diagonal  are  unchanged,  but  the  values  across  the  diagonal  from  each  other  are
swapped.

The deformation and displacement gradients that we previously explored for 1-D strain can be expanded into
their 3-D counterparts.  The following equations relate to the displacement of a point with initial coordinates
{xo, yo, zo} to final coordinates {xn, yn, zn}, and vice versa.  The Green transformation in 3-D is

xn
yn
zn

 = 

¶∂xn
¶∂xo

¶∂xn
¶∂yo

¶∂xn
¶∂zo

¶∂yn
¶∂xo

¶∂yn
¶∂yo

¶∂yn
¶∂zo

¶∂zn
¶∂xo

¶∂zn
¶∂yo

¶∂zn
¶∂zo

  
xo
yo
zo

,

and the Cauchy transformation is

xo
yo
zo

 = 

¶∂xo
¶∂xn

¶∂xo
¶∂yn

¶∂xo
¶∂zn

¶∂yo
¶∂xn

¶∂yo
¶∂yn

¶∂yo
¶∂zn

¶∂zo
¶∂xn

¶∂zo
¶∂yn

¶∂zo
¶∂zn

  
xn
yn
zn

.

The Lagrange displacement equation is

ux
uy
uz

 = 

¶∂ux
¶∂xo

¶∂ux
¶∂yo

¶∂ux
¶∂zo

¶∂uy
¶∂xo

¶∂uy
¶∂yo

¶∂uy
¶∂zo

¶∂uz
¶∂xo

¶∂uz
¶∂yo

¶∂uz
¶∂zo

  
xo
yo
zo

,

and the Euler displacement equation is

ux
uy
uz

 = 

¶∂ux
¶∂xn

¶∂ux
¶∂yn

¶∂ux
¶∂zn

¶∂uy
¶∂xn

¶∂uy
¶∂yn

¶∂uy
¶∂zn

¶∂u3
¶∂xn

¶∂u3
¶∂yn

¶∂u3
¶∂zn

  
xn
yn
zn

.

We  make  the  simplifying  assumption  that  the  Lagrangian  and  Eulerian  displacement  gradients  are  approxi-
mately equal;  that is, 

¶∂ux
¶∂xo

¶∂ux
¶∂yo

¶∂ux
¶∂zo

¶∂uy
¶∂xo

¶∂uy
¶∂yo

¶∂uy
¶∂zo

¶∂uz
¶∂xo

¶∂uz
¶∂yo

¶∂uz
¶∂zo

  º  

¶∂ux
¶∂xn

¶∂ux
¶∂yn

¶∂ux
¶∂zn

¶∂uy
¶∂xn

¶∂uy
¶∂yn

¶∂uy
¶∂zn

¶∂u3
¶∂xn

¶∂u3
¶∂yn

¶∂u3
¶∂zn
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Hence, when strains are infinitesimal, the difference between the displacement gradients in the initial and final
states is not important.  The matrix of extensions in the Lagrangian displacement matrix looks like

 

¶∂ux
¶∂xo

¶∂ux
¶∂yo

¶∂ux
¶∂zo

¶∂uy
¶∂xo

¶∂uy
¶∂yo

¶∂uy
¶∂zo

¶∂uz
¶∂xo

¶∂uz
¶∂yo

¶∂uz
¶∂zo

  = 

exx exy exz
eyx eyy eyz
ezx ezy ezz

The elements of the matrix along the diagonal  (exx,  eyy,  ezz)  are equal  to the extensions along the x,  y  and z
axes,  respectively.   So  the  diagonal  terms  are  related  to  changes  in  length  in  each  of  three  orthogonal
directions.

The remaining off-diagonal components are related to angular changes.  The displacement gradient tensor is
an  asymmetric  tensor  that  represents  both  distortion  (change  in  shape)  and  rotation.   A  tensor  that  repre-
sented rotation only would be antisymmetric;  that is, exy  = -eyx,  exz  = -ezx  and  eyz  = -ezy.  The asymmetry in

the displacement gradient tensor arises because of rotations and infinitesimal distortion.

Imagine a vector with finite length (that is, it is not infinitesimally short) that is initially parallel to the x  axis
and is rotated through an angle q counter-clockwise around the z axis toward the y axis during deformation.
Then

tan q = 
Duy

Dxo+Dux

Given  the  condition  of  infinitesimal  strain,  we  know  that   Dux`  Dxo ;   that  is,  the  component  of  the
displacement  along  the  x  axis  is  much  smaller  than  the  original  length  of  the  vector  along  the  x  axis.
Consequently,

tan q º 
Duy
Dxo

and  angle  q  is  quite  small.   The  tangent  of  very  small  angles  is  approximately  equal  to  the  angle  itself,
expressed in radian measure, so

tan q º q º 
Duy
Dxo

 = eyx

Component  eyx  measures  the  counter-clockwise  (positive)  rotation,  around  the  z  axis,  of  a  vector  that  is

initially  parallel  to  the  x  axis  toward the  y  axis  during  deformation.   Similarly,  given a  vector  that  is  initially
parallel  to  the  y  axis,  component  exy  is  approximately  equal  to  the  angle  that  the  vector  rotates  clockwise,

around the z axis, toward the x axis during deformation.

Thus far in our discussion, I have tried to keep the symbols I use as simple and uncomplimented as possible.
It is more typical to use tensor notation, sometimes called Einstein notation, to express relationships in a very
compact manner.  Tensor notation uses subscript letters (typically i, j and k) to indicate coordinate directions
or combinations of coordinate directions.  The details of how to unpack tensor notation are explained in the
appendix.  For clarity in this introductory presentation, we will leave the expressions unpacked and explicitly
use the older x, y, z terminology for coordinate axes;  however, we will employ the index subscript notation in
some variable names introduced below.

An asymmetric tensor can be decomposed into the sum of a symmetric tensor and an antisymmetric tensor.
The asymmetric Lagrangian displacement tensor eij  is the sum of the symmetric infinitesimal strain tensor ¶εij
and the antisymmetric rotation tensor Wij .

¶εij  = 

exx
Iexy + eyxM

2
Hexz + ezxL

2

Ieyx + exyM

2
eyy

Ieyz + ezyM

2

Hezx + exzL
2

Iezy + eyzM

2
ezz
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¶εij  = 

exx
Iexy + eyxM

2
Hexz + ezxL

2

Ieyx + exyM

2
eyy

Ieyz + ezyM

2

Hezx + exzL
2

Iezy + eyzM

2
ezz

Wij  = 

0
Iexy - eyxM

2
Hexz - ezxL

2

Ieyx - exyM

2
0

Ieyz - ezyM

2

Hezx - exzL
2

Iezy - eyzM

2
0

The antisymmetric rotation tensor Wij  is also known as an axial vector.  The axial vector is directed along the

rotational axis and the length of the axial vector is equal to the angle of rotation expressed in radian measure.
The Cartesian coordinates of the axial vector are given by {rx, ry, rz}, where

rx = 
-IWyz -WzyM

2

ry = -HWxz -WzxL
2

rz = 
-IWxy -WyxM

2

and the angle of rotation in radians is the length of the axial vector,

|r| = rx2 + ry2 + rz2

Example

Problem.   Given  the  following  displacement  gradient  tensor  (eij ),  calculate  the  strain  tensor  (¶εij )  and  the

rotation matrix (Wij ), and the magnitudes and orientations of the principal axes.

eij  = 

exx exy exz
eyx eyy eyz
ezx ezy ezz

 = 
3 3 2
9 8 1
6 -1 5

Answer

The strain tensor is given by 

¶εij  = 

exx
Iexy + eyxM

2
Hexz + ezxL

2

Ieyx + exyM

2
eyy

Ieyz + ezyM

2

Hezx + exzL
2

Iezy + eyzM

2
ezz

 =  

3 H3+ 9L
2

H2+ 6L
2

H9+ 3L
2

8 H1+ H-1LL
2

H6+ 2L
2

HH-1L+ 1L
2

5

 = 
3 6 4
6 8 0
4 0 5
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¶εij  = 

exx
Iexy + eyxM

2
Hexz + ezxL

2

Ieyx + exyM

2
eyy

Ieyz + ezyM

2

Hezx + exzL
2

Iezy + eyzM

2
ezz

 =  

3 H3+ 9L
2

H2+ 6L
2

H9+ 3L
2

8 H1+ H-1LL
2

H6+ 2L
2

HH-1L+ 1L
2

5

 = 
3 6 4
6 8 0
4 0 5

and the rotation tensor is 

Wij  =  

Wxx Wxy Wxz
Wyx Wyy Wyz
Wzx Wzy Wzz

  =  

0
Iexy - eyxM

2
Hexz - ezxL

2

Ieyx - exyM

2
0

Ieyz - ezyM

2

Hezx - exzL
2

Iezy - eyzM

2
0

 =   

0 H3- 9L
2

H2- 6L
2

H9- 3L
2

0 H1- H-1LL
2

H6- 2L
2

HH-1L- 1L
2

0

 =

0 -3 -2
3 0 1
2 -1 0

The antisymmetric rotation tensor (a.k.a., the axial vector) Wij  is directed along the rotational axis, and the

length  of  the  axial  vector  is  equal  to  the  angle  of  rotation  expressed  in  radian  measure.   The  Cartesian
coordinates of the axial vector are given by {rx, ry, rz}, where

rx = 
-IWyz -WzyM

2
 = -H1- H-1LL

2
 = -1

ry = -HWxz -WzxL
2

 = -HH-2L- 2L
2

 = 2

rz = 
-IWxy -WyxM

2
 = -HH-3L- 3L

2
 = 3

and the angle of rotation in radians is

|r| = rx2 + ry2 + rz2  = H-1L2 + 22 + 32  = 14  = 3.74166 radians

Using  built-in  Mathematica  functions,  we  can  determine  the  eigenvectors  and  eigenvalues.   Eigenvectors
are  vectors  that  coincide  with  the  principal  strain  axes,  and  eigenvalues  are  the  magnitudes  of  the
principal strains.

17.3  2-D horizontal strain rate from GPS velocity data

Introduction
The  purpose  of  this  section  is  to  determine  the  horizontal  strain  in  a  triangular  area  between  three  non-
colinear GPS stations,  given their  initial  locations as well  as their  north-south and east-west velocities.   This
code is based largely on the explanations published in Allmendinger, Cardozo and Fisher (2012) and Cardozo
and Allmendinger (2009).

A  stand-alone  Macintosh  application  called  SSPX  performs  this  same  analysis  in  a  more  comprehensive
manner, including estimates of uncertainty.  SSPX is available for academic or research use for free via Nestor
Cardozo’s website at http://homepage.mac.com/nfcd/work /programs.html.
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A  stand-alone  Macintosh  application  called  SSPX  performs  this  same  analysis  in  a  more  comprehensive
manner, including estimates of uncertainty.  SSPX is available for academic or research use for free via Nestor
Cardozo’s website at http://homepage.mac.com/nfcd/work /programs.html.

Input data
GPS  data  from  the  EarthScope  Plate  Boundary  Observatory  is  managed  by  UNAVCO
(http://www.unavco.org/)  and  is  available  online  for  free  at  http://pbo.unavco.org/data.   The  full  public
data holdings of UNAVCO are available via their “Data Archive Interface Version 2” at http://facility.unav-
co.org/data/dai2/app/dai2.html#.

I am going to search for data generated by one of the Plate Boundary Observatory’s permanent GPS stations
near Lake Tahoe along the California-Nevada border.  If I don’t know which station I want to learn about, I
can go to the interactive PBO map (http://pbo.unavco.org/network/gps) and zoom in on an area of interest.
I find a green marker dot in my area of interest, indicating a station that is functioning normally, and click on
it  for  some  initial  information.   The  dot  I  chose  is  associated  with  station  P150  (Martis  Creek  CN2008)
located near Kings Beach on the north side of Lake Tahoe.  

Figure  17-1.   Interactive  Plate  Boundary  Observatory  station  site  viewer,  zoomed  to  the  area  around  Lake
Tahoe. Inset window provides some data and a clickable link for more data about site P150.  From http://p-
bo.unavco.org/network/gps.
———————————————————————————————————

Clicking  on  the  dot  gives  me  a  little  bit  of  name  and  location  information,  and  a  clickable  link  to  more
information at http://pbo.unavco.org/station/overview/P150.  
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Figure  17-2.   Plate  Boundary  Observatory  Station  150  just  north  of  Lake  Tahoe.   From  http://pbo.unav-
co.org/station/photos/P150/.
———————————————————————————————————

The overview page provides me with the location of the site in the Stable North American Reference Frame
(SNARF), WGS84 coordinate system:  latitude 39.292380598° and longitude -120.033853482° at an elevation
of  2619.0828  meters  above  the  WGS84  datum.   To  compute  the  corresponding  location  in  Universal
Transverse Mercator (utm) projection, I used an online conversion utility (e.g., http://www.uwgb.edu/dutch-
s/usefuldata/ConvertUTMNoOZ.HTM  or  http://home.hiwaay.net/~taylorc/toolbox/geography/geout-
m.html;   to  learn  more  about  the  conversion,  go  to  http://www.uwgb.edu/dutchs/usefuldata/utmformu-
las.htm) .   I  can also click on the “Data Products” tab and access  a  variety  of  other  data,  including velocity
data.   At  http://pbo.unavco.org/  index.php/station/data/P150,  I  found  detrended  time-series  plots  that
indicated that P150 has an average instantaneous N-S velocity of 5.97±0.04 mm/yr ( a positive value means
moving toward north), an E-W velocity of -11.07 ±0.03 mm/yr (-ve means moving toward west), and an up-
down velocity of -0.20±0.07 mm/yr   (-ve means moving down).
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Figure 17-3.  Static plot of cleaned and detrended time-series plots with interpreted velocities relative to the
Stable North American Reference Frame (SNARF) from PBO GPS station P150.  Accessed 25 March 2012
via http://pbo.unavco.org/index.php/station/data/P150.
———————————————————————————————————

For convenience,  we compile  the data  in a  9 x  3 matrix  in which each row corresponds to a  different  GPS
station and the columns contain the following data types :  1 = site number, 2 = longitude, 3 = latitude, 4 =
elevation (m, ellipsoid), 5 = UTM X coordinate, 6 = Y coordinate, 7  = N velocity (m/yr), 8 = E velocity, 9 =
up velocity. 
The order in which the station data are presented in this matrix (i.e., which station corresponds to record 1, 2
or 3) is arbitrary.

In[1]:=
inputData =

146 -120.537284 39.337459 2347.844 712247.260 4357118.219 0.00715 -0.01025 -0.00181
149 -120.104975 39.60212988 2634.6887 748566.261 4387604.030 0.00555 -0.00933 -0.00167
150 -120.03385482 39.292380598 2619.0828 755806.266 4353418.463 0.00597 -0.01107 -0.00020

;

General explanation of the method
We would like to use data from GPS arrays to define the average instantaneous strain rate in a triangular area
between  three  GPS  stations.   We  know  the  initial  location  (xo ,  yo),  as  well  as  the  east-west  instantaneous
velocity  (ux)  and  the  north-south  instantaneous  velocity  (uy),  of  each  GPS  station.   We  do  not  know  the

elements of the deformation gradient tensor (exx, exy, eyx, eyy) or the coordinates of the translation vector (tx,

ty).  The underlying relationships in matrix form is

10 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012



We would like to use data from GPS arrays to define the average instantaneous strain rate in a triangular area
between  three  GPS  stations.   We  know  the  initial  location  (xo ,  yo),  as  well  as  the  east-west  instantaneous
velocity  (ux)  and  the  north-south  instantaneous  velocity  (uy),  of  each  GPS  station.   We  do  not  know  the

elements of the deformation gradient tensor (exx, exy, eyx, eyy) or the coordinates of the translation vector (tx,

ty).  The underlying relationships in matrix form is

1ux
1uy
2ux
2uy
3ux
3uy

 = 

1 0 1xo 1yo 0 0
0 1 0 0 1xo 1yo
1 0 2xo 2yo 0 0
0 1 0 0 2xo 2yo
1 0 3xo 3yo 0 0
0 1 0 0 3xo 3yo

 

tx
ty
exx
exy
eyx
eyy

Following the explanation in Allmendinger and others (2012, p. 156), the matrix equation above has the form
of

y = Mx

where  y  is  a  1x6  matrix  of  known  quantities  (the  instantaneous  displacement/velocity  vectors),  x  is  a  1x6
matrix  of  unknown quantities  (the  translation  vector  and  the  deformation  gradient  tensor),  and  M  is  a  6x6
matrix of known values including zeros, ones and the location vector coordinates of the three GPS stations.
We need to rearrange this matrix equation so that all  of the known quantities are collected on one side and
the unknowns are on the other side of the equation.  This requires us to compute the inverse of M

x = M-1y

Mathematica has a built-in function to invert matrices, which we will employ in the form Inverse[M] =  M-1.
Allmendinger and others (2012) state that for perfectly constrained cases like this notebook was designed to
handle, in which data from just three non-colinear GPS stations are used, the matrix can be inverted using LU
decomposition.  Mathematica has a built-in process for LU decomposition via the function LUDecomposi-
tion[m].

What if we want to analyze velocity data from more than three GPS stations?  A more generalized form of
the 2-D matrices provided above is given by

                                        

1ux
1uy
2ux
2uy
3ux
3uy

ª

nux
nuy

 = 

1 0 1xo 1yo 0 0
0 1 0 0 1xo 1yo
1 0 2xo 2yo 0 0
0 1 0 0 2xo 2yo
1 0 3xo 3yo 0 0
0 1 0 0 3xo 3yo
ª ª ª ª ª ª

1 0 nxo nyo 0 0
0 1 0 0 nxo nyo

 

tx
ty
exx
exy
eyx
eyy

Here,  the  2n×6  matrix  (where  n>3)  is  the  M  matrix  that  we  must  invert  to  compute  values  for  the  6
unknowns  on  the  right  side  of  the  equation.   For  non-square  matrices  reflecting  over-constrained  cases
with  more  GPS  data  than  is  minimally  required  to  obtain  a  solution,  Allmendinger  and  others  (2012)
recommend  using  the  following  formulation  that  employs  transpose  M  matrices  (after  Press  and  others,
1986, and Menke, 1984)
                                                            x = [MT MD-1 MTy
The  built-in  Mathematica  function  PseudoInverse  can  also  be  used  to  invert  both  square  and
rectangular matrices.
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What if we want to analyze velocity data from more than three GPS stations?  A more generalized form of
the 2-D matrices provided above is given by

                                        

1ux
1uy
2ux
2uy
3ux
3uy

ª

nux
nuy

 = 

1 0 1xo 1yo 0 0
0 1 0 0 1xo 1yo
1 0 2xo 2yo 0 0
0 1 0 0 2xo 2yo
1 0 3xo 3yo 0 0
0 1 0 0 3xo 3yo
ª ª ª ª ª ª

1 0 nxo nyo 0 0
0 1 0 0 nxo nyo

 

tx
ty
exx
exy
eyx
eyy

Here,  the  2n×6  matrix  (where  n>3)  is  the  M  matrix  that  we  must  invert  to  compute  values  for  the  6
unknowns  on  the  right  side  of  the  equation.   For  non-square  matrices  reflecting  over-constrained  cases
with  more  GPS  data  than  is  minimally  required  to  obtain  a  solution,  Allmendinger  and  others  (2012)
recommend  using  the  following  formulation  that  employs  transpose  M  matrices  (after  Press  and  others,
1986, and Menke, 1984)
                                                            x = [MT MD-1 MTy
The  built-in  Mathematica  function  PseudoInverse  can  also  be  used  to  invert  both  square  and
rectangular matrices.

Once  the  components  of  the  deformation  gradient  tensor  are  known,  we  complete  the  2-D  process  as
follows.   Given  the  M-1  matrix  we  just  computed,  we  have  the  components  of  the  displacement  gradient
tensor eij

eij  = 
exx exy
eyx eyy

The 2-D strain tensor is given by

¶εij  = 
exx

Iexy + eyxM

2

Ieyx + exyM

2
eyy

and the 2-D rotation tensor is

Wij  = 
0

Iexy - eyxM

2

Ieyx - exyM

2
0

The angle of rotation is equal to the length of vector |Wxy| = |Wyx|.

Computation
Insert known data into governing equation to find unknowns

In[2]:= matrixM =

1 0 inputData@@1, 5DD inputData@@1, 6DD 0 0
0 1 0 0 inputData@@1, 5DD inputData@@1, 6D
1 0 inputData@@2, 5DD inputData@@2, 6DD 0 0
0 1 0 0 inputData@@2, 5DD inputData@@2, 6D
1 0 inputData@@3, 5DD inputData@@3, 6DD 0 0
0 1 0 0 inputData@@3, 5DD inputData@@3, 6D

;

In[3]:= inverseM = Inverse@matrixMD;

In[4]:= matrixY = 88inputData@@1, 8DD<, 8inputData@@1, 7DD<,
8inputData@@2, 8DD<, 8inputData@@2, 7DD<,
8inputData@@3, 8DD<, 8inputData@@3, 7DD<<;

In Mathematica, matrix multiplication is done using a dot symbol -- that is, a period -- or by using the built-in
function Dot[m,k] where m and k are the names of the two matrices.

In[5]:= matrixX = Flatten@inverseM.matrixYD;
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The matrix eij is the 2-D displacement gradient tensor

In[6]:= eij =
88matrixX@@3DD, matrixX@@4DD<, 8matrixX@@5DD, matrixX@@6DD<<;

In[7]:= displGradTensor = MatrixForm@eijD;

The matrix epsij is the 2-D Lagrangian strain tensor

In[8]:= epsij = 88eij@@1, 1DD, HHeij@@1, 2DD + eij@@2, 1DDL ê 2L<,
8HHeij@@2, 1DD + eij@@1, 2DDL ê 2L, eij@@2, 2DD<<;

In[9]:= lagrangeStrainTensor = MatrixForm@epsijD;

Rotation

omega12 is the rotation angle in degrees;  positive is a counterclockwise rotation.

In[10]:= omega12 = HHeij@@1, 2DD - eij@@2, 1DDL ê 2L H180 ê pL;

Translation

transCoord is a list of the coordinates of the translation vector

In[11]:= transCoord = 8matrixX@@1DD, matrixX@@2DD<;

The length of the translation vector (transDistance) is given in meters.

In[12]:= transDistance = ,ItransCoord@@1DD2 + transCoord@@2DD2M;

unitTransVect is the unit vector that is coincident with the translation vector.

In[13]:= unitTransVect = 8HtransCoord@@1DD ê transDistanceL,
HtransCoord@@2DD ê transDistanceL<;

transAngle is the angle between the north-directed vector and the translation vector.

In[14]:= transAngle = ArcCos@northUnitVector.unitTransVectD H180 ê pL;

The azimuth of the translation vector (transAzimuth) is measured clockwise from north.

In[15]:= transAzimuth =
If@HunitTransVect@@1DD < 0L, H360 - transAngleL, transAngleD;

Greater and lesser horizontal extension axes

vectNorm2D and unitVector2D are two user-defined functions that determine the length of a 2-D vector
and find the unit vector corresponding to an arbitrary 2-D vector, respectively.

In[16]:= vectNorm2D@x_D := x.x ;

In[17]:= unitVector2D@x_D :=
8x@@1DD ê vectNorm2D@xD, x@@2DD ê vectNorm2D@xD<;

northUnitVector is defined as a unit vector that points north, and from which azimuths can be computed.

In[18]:= northUnitVector = 80, 1<;
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eigenVects  is  the set of eigen vectors for the symmtrical  Lagrangian strain tensor.   They are unit  vectors
that coincide with the principal axes of the strain tensor.

In[19]:= eigenVects = Eigenvectors@epsijD;

In[20]:= eigenVector1 = 8eigenVects@@1, 1DD, eigenVects@@1, 2DD<;

In[21]:= unitEVect1 = unitVector2D@eigenVector1D;

In[22]:= eigenVector2 = 8eigenVects@@2, 1DD, eigenVects@@2, 2DD<;

In[23]:= unitEVect2 = unitVector2D@eigenVector2D;

The eigenvalues are the magnitudes of the principal strains

In[24]:= axisLengths = Eigenvalues@epsijD;

The variable “a” is the length of the minimum extension axis of the 2-D horizontal strain ellipse;  “b” is the
length of the maximum extension axis.

Variable  a  is  the  extension along the  maximum extension axis,  and variable  a1  is  the  length of  the  corre-
sponding semi - major axis after deformation of a circle that had an initial radius of 1.

In[25]:= a = If@HAbs@axisLengths@@1DDD > Abs@axisLengths@@2DDDL,
axisLengths@@1DD, axisLengths@@2DDD;

In[26]:= a1 = 1 + a;

minExtAxis  is  the minimum extension axis,  defined as  being associated with the larger  eigenvalue of  the
two axisLengths.

In[27]:= minExtAxis = If@HAbs@axisLengths@@1DDD > Abs@axisLengths@@2DDDL,
unitEVect1, unitEVect2D;

angleA is the angle between the north-directed vector and the minimum extension axis.

In[28]:= angleA = ArcCos@northUnitVector.minExtAxisD H180 ê pL;

minExtAxisAz is a list providing both options for the azimuth of the minimum extension axis.

In[29]:= minExtAxisAz1 = If@HminExtAxis@@1DD < 0L, H360 - angleAL, angleAD;

In[30]:= minExtAxisAz2 = If@HminExtAxisAz1 > 180L,
minExtAxisAz1 - 180, minExtAxisAz1 + 180D;

In[31]:= minExtAxisAz = 8minExtAxisAz1, minExtAxisAz2<;

Variable  b  is  the extension along the maximum extension axis,  and variable  b1  is  the length of  the corre-
sponding semi - major axis after deformation of a circle that had an initial radius of 1.

In[32]:= b = If@HAbs@axisLengths@@1DDD < Abs@axisLengths@@2DDDL,
axisLengths@@1DD, axisLengths@@2DDD;

In[33]:= b1 = 1 + b;

maxExtAxis is the maximum extension axis, defined as being associated with the smaller eigenvalue of the
two axisLengths.

In[34]:= maxExtAxis = If@HAbs@axisLengths@@1DDD > Abs@axisLengths@@2DDDL,
unitEVect2, unitEVect1D;
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angleB is the angle between the north-directed vector and the maximum extension axis.

In[35]:= angleB = ArcCos@northUnitVector.maxExtAxisD H180 ê pL;

maxExtAxisAz is a list providing both options for the azimuth of the maximum extension axis.

In[36]:= maxExtAxisAz1 = If@HmaxExtAxis@@1DD < 0L, H360 - angleBL, angleBD;

In[37]:= maxExtAxisAz2 = If@HmaxExtAxisAz1 > 180L,
maxExtAxisAz1 - 180, maxExtAxisAz1 + 180D;

In[38]:= maxExtAxisAz = 8maxExtAxisAz1, maxExtAxisAz2<;

Area strain

The area of a circle that has a radius of r is equal to pr2, and the area of an ellipse with semi-major and semi-
minor axes a and b is equal to pab.

In[39]:= circleArea = p;

In[40]:= ellipseArea = p a1 b1;

In[41]:= areaStrain = HellipseArea - circleAreaL ê circleArea;

Prepare to plot the results

The angle between the X axis (that is, the east-west axis) of the original GPS-station triangle and the longer
principal axis is called “theta0”.

In[42]:= theta0 = If@HminExtAxis@@1DD < 0L,
HHp ê 180L H90 - HminExtAxisAz1 - 180LLL,
HHp ê 180L H90 - minExtAxisAz1LLD;

The angle theta combines theta0 with the rigid-body rotation omegaij so that the axes of the resulting plot
image are north-south and east-west.

In[43]:= theta = theta0 + Homega12 * Hp ê 180LL;

In[44]:= rotatedEllipse =
Table@8Ha1 Cos@tD Cos@thetaDL + Hb1 Sin@tD * H-Sin@thetaDLL,

Ha1 Cos@tD Sin@thetaDL + Hb1 Sin@tD Cos@thetaDL<,
8t, 0, 2 p, p ê 36<D;

The plot range should be at least a bit larger than the strain ellipse, and this is handled by a variable called
maxplot.

In[45]:= maxplot = 1.1 a1;

The first plot file (plot1) plots a black ellipse with semimajor axis length of “a”, semiminor axis length “b”,
and major axis inclined “theta” degrees relative to the east-directed vector.

In[46]:= plot1 = ListLinePlot@rotatedEllipse,
AspectRatio Ø 1, AxesLabel Ø 8"East", "North"<,
PlotRange Ø 88-maxplot, maxplot<, 8-maxplot, maxplot<<,
PlotStyle Ø 8Black<D;

The second plot file (plot2) plots a dashed green reference circle.
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In[47]:= referenceCircle =
Table@8HCos@tD Cos@thetaDL + HSin@tD * H-Sin@thetaDLL,

HCos@tD Sin@thetaDL + HSin@tD Cos@thetaDL<,
8t, 0, 2 p, p ê 36<D;

In[48]:= plot2 = ListLinePlot@%, AspectRatio Ø 1,
PlotRange Ø 88-maxplot, maxplot<, 8-maxplot, maxplot<<,
PlotStyle Ø 8Thick, Dashed, Green<D;

The third plot file (plot3) creates a blue line along the major axis of the ellipse.

In[49]:= plot3 = ListLinePlot@88a1 Cos@thetaD, a1 Sin@thetaD<,
8-a1 Cos@thetaD, -a1 Sin@thetaD<<, AspectRatio Ø 1,

PlotRange Ø 88-maxplot, maxplot<, 8-maxplot, maxplot<<,
PlotStyle Ø 8Blue<D;

The fourth plot file (plot4) creates a red line along the minor axis of the ellipse.

In[50]:= plot4 = ListLinePlot@
88b1 Cos@theta + Hp ê 2LD, b1 Sin@theta + Hp ê 2LD<,
8-b1 Cos@theta + Hp ê 2LD, -b1 Sin@theta + Hp ê 2LD<<,

AspectRatio Ø 1, PlotRange Ø 88-maxplot, maxplot<,
8-maxplot, maxplot<<, PlotStyle Ø 8Red<D;

The fifth plot file (plot5) merges the previous four plot files into a single file for display.

In[51]:= plot5 = Show@plot2, plot1, plot3, plot4D;

Results
Stations used

In[52]:= 8inputData@@1, 1DD, inputData@@2, 1DD, inputData@@3, 1DD<

Out[52]= 8146, 149, 150<

Cartesian components of translation vector

In[53]:= transCoord

Out[53]= 8-0.207876, 0.107522<

Length (meters) and Azimuth (degrees) of translation vector

In[54]:= 8transDistance, transAzimuth<

Out[54]= 80.234038, 297.35<

Displacement gradient tensor

In[55]:= displGradTensor

Out[55]//MatrixForm=

-1.47675 µ 10-8 4.77711 µ 10-8

-2.86486 µ 10-8 -1.83532 µ 10-8

Lagrangian strain tensor

16 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012



In[56]:= lagrangeStrainTensor

Out[56]//MatrixForm=

-1.47675 µ 10-8 9.56129 µ 10-9

9.56129 µ 10-9 -1.83532 µ 10-8

Magnitude and azimuth of maximum principal extension

In[57]:= 8b, maxExtAxisAz<

Out[57]= 9-6.83245 µ 10-9, 8230.31, 50.3102<=

Magnitude and azimuth of minimum principal extension

In[58]:= 8a, minExtAxisAz<

Out[58]= 9-2.62883 µ 10-8, 8320.31, 140.31<=

Area strain (dilation; negative strain indicates less area after deformation)

In[59]:= areaStrain

Out[59]= -3.31208 µ 10-8

Infinitesimal rotation (clockwise + ve)

In[60]:= omega12

Out[60]= 2.18926 µ 10-6

In[61]:= plot5

Out[61]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure  17-4.   Plot  of  the  strain  ellipse  (black  ellipse)  relative  to  the  coordinate  axes  oriented  north-south
(vertical  axis  in plot)  and east-west  (horizontal  axis).   The axes are  labeled in dimensionless  strain.   The red
axis is the minimum extension axis.  The green dashed circle shows a circle prior to deformation, so the black
ellipse depicts that same circle after deformation.
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———————————————————————————————————

17.4  Checking our results with SSPX

Introduction
The  code  presented  above  is  based  on  Allmendinger,  Cardozo  and  Fisher  (2012)  and  Cardozo  and  All-
mendinger  (2009),  which  also  explain  the  basis  for  the  algorithms  implemented  in  SSPX.   Hence,  we  can
check our code against the output of SSPX, given the same input data.

Input data
I created a text file called TahoeTest1.txt with the following content:

X 2 LL
146 -120.537284 39.337459 -0.01025 0.00715
149 -120.104975 39.60212988 -0.00933 0.00555
150 -120.03385482 39.292380598 -0.01107 0.00597

The  header  (first)  line  indicates  that  the  input  data  do  not  include  uncertainties  (X),  that  we  want  a  2-D
solution (2) and the locations are provided in longitude latitude form (LL).  The three data records include the
station identifier, longitude, latitude, E-W velocity (mm/yr) and N-S velocity (mm/yr) separated by spaces.

Running SSPX
The  following  is  a  bare-bones  set  of  instructions  for  obtaining  information  that  we  can  compare  with  our
results.   Start  SSPX.   Go  to  the  File  menu  and  select  Load  Stations  from  text.   Using  the
appropriate browse window, navigate to the input data file  (TahoeTest1.txt)  and select it.   Go to the
Strain menu and select Best Fit For All.  Go back to the File menu and select Save Strain as txt,
and provide a name for the output file.

SSPX  is  a  feature-rich  program  that  provides  graphics  and  text  output,  as  well  as  an  extensive  help  menu.
You should work your way through the other options so that you can take full advantage of its capabilities.

Comparison of results
Our translation vector:  {-0.207876, 0.107522}

SSPX translation vector:  {-2.078779e-01 ± 2.088447e-03, 1.075201e-01 ± 2.088447e-03}

Our displacement gradient tensor:  
-1.47675µ10-8 4.77711µ10-8

-2.86486µ10-8 -1.83532µ10-8

SSPX displacement gradient tensor:

  
-1.476743 e - 08 ± 3.952435 e - 10 4.777148 e - 08 ± 4.917541 e - 10
-2.864858 e - 08 ± 3.952435 e - 10 -1.835277 e - 08 ± 4.917541 e - 10

Our Lagrangian strain tensor:  
-1.47675µ10-8 9.56129µ10-9

9.56129µ10-9 -1.83532µ10-8

SSPX Lagrangian strain tensor: 
-1.476743 e - 08 9.561450 e - 09
9.561450 e - 09 -1.835277 e - 08

Our magnitude and orientation of principal extensions:
   emax:  -6.83245µ10-9     230.31° or 50.3102°
   emin:  -2.62883µ10-8     320.31° or 140.31°
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Our magnitude and orientation of principal extensions:
   emax:  -6.83245µ10-9     230.31° or 50.3102°
   emin:  -2.62883µ10-8     320.31° or 140.31°

SSPX magnitude and orientation of principal extensions.  
   emax:  -6.832045e-09 ± 8.713311e-10     50.31° ± 0.36°     
   emin:  -2.628815e-08 ± 1.566647e-11   320.31° ± 0.36°

Our volume strain:  -3.31208µ10-8

SSPX volume strain:  -3.312019e-08 ± 8.869975e-10

Our infinitesimal rotation axis:  2.18926µ10-6

SSPX infinitesimal rotation axis:  2.189274e-06 ± 2.764824e-0.9

SSPX  provides  an  assessment  of  uncertainty  that  we  have  not  yet  incorporated;   however,  we  have  repro-
duced the results of SSPX with our Mathematica-based code with very minor differences.

Let’s clear the previous variables so that we can be certain that we are computing everything anew in the code
that follows.

In[62]:= Clear@inputData, matrixM, matrixY, matrixX, eij, epsij, omega12,
transDistance, unitTransVect, transAngle, transAzimuth,
northUnitVector, eigenVects, eigenVector1, unitEVect1,
eigenVector2, unitEVect2, axisLengths, a, b, minExtAxis,
angleA, minExtAxisAz1, minExtAxisAz2, minExtAxisAz,
maxExtAxis, angleB, maxExtAxisAz1, maxExtAxisAz2, circleArea,
ellipseArea, areaStrain, theta0, theta, rotatedEllipse,
referenceCircle, maxplot, plot1, plot2, plot3, plot4, plot5D;

17.5  Boiling out the fat:  n-station version without uncertainties
The following is a bare-bones code in Mathematica to generate strain information from GPS velocity data for 3
or more stations, based on the preceding discussion.

In[63]:=
inputData =

146 -120.537284 39.337459 2347.844 712247.260 4357118.219 0.00715 -0.01025 -0.00181
149 -120.104975 39.60212988 2634.6887 748566.261 4387604.030 0.00555 -0.00933 -0.00167
150 -120.03385482 39.292380598 2619.0828 755806.266 4353418.463 0.00597 -0.01107 -0.00020
090 -119.799853081 39.572803815 1503.6541 774885.45 4 385237.69 0.00456 -0.00825 -0.00023

;

In[64]:= vectNorm2D@x_D := x.x ;

In[65]:= unitVector2D@x_D :=
8x@@1DD ê vectNorm2D@xD, x@@2DD ê vectNorm2D@xD<;
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In[66]:= matrixM = Flatten@
Table@881, 0, inputData@@i, 5DD, inputData@@i, 6DD, 0, 0<,

80, 1, 0, 0, inputData@@i, 5DD, inputData@@i, 6DD<<,
8i, 1, Length@inputDataD<D, 1D;

matrixY = Flatten@Table@88inputData@@i, 8DD<,
8inputData@@i, 7DD<<, 8i, 1, Length@inputDataD<D, 1D;

matrixX = Flatten@PseudoInverse@matrixMD.matrixYD;
eij =

88matrixX@@3DD, matrixX@@4DD<, 8matrixX@@5DD, matrixX@@6DD<<;
epsij = 88eij@@1, 1DD, HHeij@@1, 2DD + eij@@2, 1DDL ê 2L<,

8HHeij@@2, 1DD + eij@@1, 2DDL ê 2L, eij@@2, 2DD<<;
omega12 = HHeij@@1, 2DD - eij@@2, 1DDL ê 2L H180 ê pL;

In[72]:= transDistance = ,ImatrixX@@1DD2 + matrixX@@2DD2M;

unitTransVect = 8HmatrixX@@1DD ê transDistanceL,
HmatrixX@@2DD ê transDistanceL<;

transAngle = ArcCos@northUnitVector.unitTransVectD H180 ê pL;
transAzimuth =

If@HunitTransVect@@1DD < 0L, H360 - transAngleL, transAngleD;

In[76]:= eigenVects = Eigenvectors@epsijD;
eigenVector1 = 8eigenVects@@1, 1DD, eigenVects@@1, 2DD<;
unitEVect1 = unitVector2D@eigenVector1D;
eigenVector2 = 8eigenVects@@2, 1DD, eigenVects@@2, 2DD<;
unitEVect2 = unitVector2D@eigenVector2D;
axisLengths = Eigenvalues@epsijD;

In[82]:= northUnitVector = 80, 1<;

In[83]:= a = If@HAbs@axisLengths@@1DDD > Abs@axisLengths@@2DDDL,
axisLengths@@1DD, axisLengths@@2DDD;

minExtAxis = If@HAbs@axisLengths@@1DDD > Abs@axisLengths@@2DDDL,
unitEVect1, unitEVect2D;

angleA = ArcCos@northUnitVector.minExtAxisD H180 ê pL;
minExtAxisAz1 = If@HminExtAxis@@1DD < 0L, H360 - angleAL, angleAD;
minExtAxisAz2 = If@HminExtAxisAz1 > 180L,

minExtAxisAz1 - 180, minExtAxisAz1 + 180D;
minExtAxisAz = 8minExtAxisAz1, minExtAxisAz2<;
b = If@HAbs@axisLengths@@1DDD < Abs@axisLengths@@2DDDL,

axisLengths@@1DD, axisLengths@@2DDD;
maxExtAxis = If@HAbs@axisLengths@@1DDD > Abs@axisLengths@@2DDDL,

unitEVect2, unitEVect1D;
angleB = ArcCos@northUnitVector.maxExtAxisD H180 ê pL;
maxExtAxisAz1 = If@HmaxExtAxis@@1DD < 0L, H360 - angleBL, angleBD;
maxExtAxisAz2 = If@HmaxExtAxisAz1 > 180L,

maxExtAxisAz1 - 180, maxExtAxisAz1 + 180D;
maxExtAxisAz = 8maxExtAxisAz1, maxExtAxisAz2<;
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In[95]:= circleArea = p;
ellipseArea = p H1 + aL H1 + bL;
areaStrain = HellipseArea - circleAreaL ê circleArea;

In[98]:= theta0 =
If@HminExtAxis@@1DD < 0L, HHp ê 180L H90 - HminExtAxisAz1 - 180LLL,
HHp ê 180L H90 - minExtAxisAz1LLD;

theta = theta0 + Homega12 * Hp ê 180LL;

In[100]:= rotatedEllipse = Table@
8HH1 + aL Cos@tD Cos@thetaDL + HH1 + bL Sin@tD * H-Sin@thetaDLL,
HH1 + aL Cos@tD Sin@thetaDL + HH1 + bL Sin@tD Cos@thetaDL<,

8t, 0, 2 p, p ê 36<D;
referenceCircle = Table@

8HCos@tD Cos@thetaDL + HSin@tD * H-Sin@thetaDLL,
HCos@tD Sin@thetaDL + HSin@tD Cos@thetaDL<, 8t, 0, 2 p, p ê 36<D;

In[102]:= maxplot = 1.1 H1 + aL;

In[103]:= plot1 = ListLinePlot@rotatedEllipse,
AspectRatio Ø 1, AxesLabel Ø 8"East", "North"<,
PlotRange Ø 88-maxplot, maxplot<, 8-maxplot, maxplot<<,
PlotStyle Ø 8Black<D;

plot2 = ListLinePlot@referenceCircle, AspectRatio Ø 1,
PlotRange Ø 88-maxplot, maxplot<, 8-maxplot, maxplot<<,
PlotStyle Ø 8Thick, Dashed, Green<D;

plot3 = ListLinePlot@88H1 + aL Cos@thetaD, H1 + aL Sin@thetaD<,
8-H1 + aL Cos@thetaD, -H1 + aL Sin@thetaD<<, AspectRatio Ø 1,

PlotRange Ø 88-maxplot, maxplot<, 8-maxplot, maxplot<<,
PlotStyle Ø 8Blue<D;

plot4 = ListLinePlot@88H1 + bL Cos@theta + Hp ê 2LD,
H1 + bL Sin@theta + Hp ê 2LD<, 8-H1 + bL Cos@theta + Hp ê 2LD,
-H1 + bL Sin@theta + Hp ê 2LD<<, AspectRatio Ø 1,

PlotRange Ø 88-maxplot, maxplot<, 8-maxplot, maxplot<<,
PlotStyle Ø 8Red<D;

plot5 = Show@plot2, plot1, plot3, plot4D;

Results
Stations used

In[108]:= Table@inputData@@i, 1DD, 8i, 1, Length@inputDataD<D

Out[108]= 8146, 149, 150, 90<

Cartesian components of translation vector

In[109]:= 8matrixX@@1DD, matrixX@@2DD<

Out[109]= 8-0.264769, 0.117573<

Length (meters) and Azimuth (degrees) of translation vector
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In[110]:= 8transDistance, transAzimuth<

Out[110]= 80.289699, 293.944<

Displacement gradient tensor

In[111]:= MatrixForm@eijD

Out[111]//MatrixForm=

2.23318 µ 10-9 5.7969 µ 10-8

-3.16519 µ 10-8 -2.01548 µ 10-8

Lagrangian strain tensor

In[112]:= MatrixForm@epsijD

Out[112]//MatrixForm=

2.23318 µ 10-9 1.31586 µ 10-8

1.31586 µ 10-8 -2.01548 µ 10-8

Magnitude and azimuth of maximum principal extension

In[113]:= 8b, maxExtAxisAz<

Out[113]= 98.31499 µ 10-9, 8245.194, 65.1939<=

Magnitude and azimuth of minimum principal extension

In[114]:= 8a, minExtAxisAz<

Out[114]= 9-2.62366 µ 10-8, 8335.194, 155.194<=

Area strain (dilation; negative strain indicates less area after deformation)

In[115]:= areaStrain

Out[115]= -1.79216 µ 10-8

Infinitesimal rotation (clockwise + ve)

In[116]:= omega12

Out[116]= 2.56745 µ 10-6
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In[117]:= plot5

Out[117]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure  16-5.   Plot  of  the  strain  ellipse  (black  ellipse)  relative  to  the  coordinate  axes  oriented  north-south
(vertical  axis  in plot)  and east-west  (horizontal  axis).   The axes are  labeled in dimensionless  strain.   The red
axis is the minimum extension axis.  The green dashed circle shows a circle prior to deformation, so the black
ellipse depicts that same circle after deformation.
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Postscript

J.C. Savage offered me the following advice in an email message:

“For your purposes the formulation in spherical coordinates in my Eastern California shear zone paper is too
complicated.  Nor do I believe it is worthwhile to include the vertical motions.  Here is a simplified version
for the horizontal strains which is as accurate as justified by local (within 200 km) data : 
Calculate homogeneous strain approximation to observed velocities
1.  Convert the latitude and longitude of your stations to grid coordinates (northing and easting).Try Google
search under “convert latitude longitude to utm” for automatic conversions.
2. Translate to center of mass coordinates.x’ = x - xbar and y’ = y - ybar where xbar and ybar are the averages
of x and y, respectively.
3.  I  presume  you  have  the  east  vE  and  north  vN  velocities  of  the  stations  from  PBO.   Then  solve  the
following  equations  (Jaeger,  J.C.,  Elasticity,  Fracture,  and  Flow,  Methuen,  London,  1964,  p.39)  by  least
squares for the strain (exx, exy, and eyy) and rotation (w) rates : 
vE = exx x’ + exy y’ - w y’
vN = exy x’ + eyy y’ + w x’
Notice  I  use  tensor  strain  rates  not  engineering  strain  as  used  by  Jaeger.   There  will  be  a  pair  of  those
equations  for  each  station,  and  you  will  need  at  least  three  stations  to  solve  for  the  4  unknowns.   More
stations will increase the redundancy and give better estimates of standard deviations.
4.  Calculate  principal  strain  rates  from exx,  exy,  and  eyy.   Setting  up  the  least  squares  solution  to  the  6  or
more equations will depend to some extent upon the least squares program that you have.”.
—————————————————————————

Bill Hammond offered the following in an email message:

“Here’s  what  I  normally  do.   I  use  a  little  matlab  script  I  wrote  a  while  back  that  takes  the  lat,  lon,  north
velocity,  east  velocity  (and uncertainties),  and  it  spits  out  the  stain  and rotation  rates.   This  is  based  on the
appendix of Savage et al.,  2001, which takes the spherical  geometry of the Earth surface into account.   You
probably wanted something simpler, maybe even in 2D, but I realized that by the time it was all written out in
2D, you might as well do it on a sphere. Perhaps what this subroutine lacks in simplicity is made up for by its
ease of use (if you have matlab).”
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“Here’s  what  I  normally  do.   I  use  a  little  matlab  script  I  wrote  a  while  back  that  takes  the  lat,  lon,  north
velocity,  east  velocity  (and uncertainties),  and  it  spits  out  the  stain  and rotation  rates.   This  is  based  on the
appendix of Savage et al.,  2001, which takes the spherical  geometry of the Earth surface into account.   You
probably wanted something simpler, maybe even in 2D, but I realized that by the time it was all written out in
2D, you might as well do it on a sphere. Perhaps what this subroutine lacks in simplicity is made up for by its
ease of use (if you have matlab).”

The MatLab script that Bill provided is available via 
http://bearspace.baylor.edu/Vince_Cronin/www/GradStruct/GradStructHome12.html

25 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012


