
Chapter 17. Crustal strain as
measured using GPS geodesy

© 1988 - 2012 by Vincent S. Cronin

17.1 Introduction
I begin this chapter by acknowledging that my treatment of this material follows that of Allmendinger,
Cardozo and Fisher (2012), to whom I owe an intellectual debt for writing such a clear text.

The purpose of this chapter is to bring you to the point at which you can estimate the 2-dimensional
instantaneous strain rate between a set of 3 geodetic GPS stations. This entails working on concepts as well
as code.

17.2 Strain

One-dimensional strain
The idea of one-dimensional strain is the starting point for discussions of strain in physics, engineering, and
structural geology courses, so it might be familiar to you. If so, just play along so that we can build our
understanding from the ground up.

You have a lovely strip of elastic material like a broken rubber band. This is a very special elastic strip -- the
sort that one dreams of in a physics class, along with frictionless surfaces and massless elephants. Your elastic
strip has a perfectly linear-elastic rheology, so that it lengthens in exact proportion to the amont of force you
exert to pull on it. And we can use the idea of force rather than stress because our imaginary elastic strip is
infinitely thin. So displacement is a linear function of force for our 1-D experiment. With all of those
limitations in mind, let’s move on.

Before you elongate the elastic strip, you paint a thin white band around it in a location that will serve as the
origin of our 1-dimensional coordinate system; that is, its coordinate is defined as {0}. You move down the
strip a little bit to your right and paint a thin blue band, and a little ways further down the strip you paint a
thin red band. The blue band has an initial or original coordinate of xbo , and the red band has an original
coordinate of xro .
Next, we stretch the rubber strip so that the distance from the origin to the new location of the thin red band
(xrn) is twice the distance before stretching (xro). That is,

xrn = 2 xro

Thanks to all of the restrictions we placed on the properties of the elastic strip, we can reliably predict the
coordinates of the blue band after stretching.

xbn = 2 xbo

© 2012 by Vincent S. Cronin Version of 28 March 2012

In fact, we can specify the new location of any point r along the elastic strip (xrn) given its original location
(xro).

xrn = 2 xro

The process of expressing a new location in terms of an initial or original location is an example of a Green
transformation. We use the word “transformation” in the sense of “coordinate transformation” -- determin-
ing the coordinates of a point relative to a different coordinate system.

The number “2” in this example is called the deformation gradient or slope, which makes some sense because
our elastic strip has a linear elastic rheology. Digging a little deeper, the difference between the initial distance
between any two points r and b on the strip, (xρo - xbo) = Dxo, is proportional to the difference between the

new distance between those same two points, (xρn - xbn) = Dxn . The quotient of the final length divided by

the initial length is called the stretch (S) by structural geologists, so

S = final distance
initial distance

=
Ixρn - xbnM

Ixρo - xboM
 = D xn

D xo
 = lim ¶∂xn

¶∂xo
 = 2

Hence, the stretch in our 1-D example is the same as the deformation gradient. We can say that the deforma-
tion gradient is homogeneous in our example because it is constant for any pair of points along the linear-
elastic strip. Although it was not strictly necessary in this example, the deformation gradient was expressed in
terms of partial derivatives using the ¶∂ symbol because we are trying to build a toolbox that will allow us to
account for deformation in 2 and 3 dimensions.

Similarly, the original location can be expressed in terms of the new location using a Cauchy transformation,
so the inverse stretch (S-1) is

S-1 = initial distance
final distance

=
Ixρo - xboM

Ixρn - xbnM
 = D xo

D xn
 = lim ¶∂xo

¶∂xn
 = 0.5

Another way to approach the analysis is to consider the displacement vectors for the red and blue markers.
The displacement vectors connecting the initial to the final positions of the red and blue markers are

ur = xrn - xro

and

ub = xbn - xbo
A displacement vector from the original location to the final location is called a Lagrangian displacement
vector. The gradient or slope of Lagrangian displacement vector for a 1-D experiment is the same as the
extension (e) that you might be familiar with from structural geology

e =
Hfinal lengthL- Hinitial lengthL

initial length

In this instance,

e =
difference between the lengths of two displacement vectors

difference between the lengths of two initial-location vectors

The difference between the lengths of two displacement vectors is

DuL = ur - ub = (xrn - xro) - (xbn - xbo)

and the difference between the lengths of two initial-location vectors is

Dxo = xro - xbo

2 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

so

e = Hur - ubL
Hxro - xboL

 = DuL
D xo

 = lim ¶∂uL
¶∂xo

The inverse of this process, in which we consider the displacement vectors relative to the final location
vectors, gives the Eulerian displacement vector, and its gradient is the inverse of the extension.

e-1 =
difference between the lengths of two displacement vectors

difference between the lengths of two final-location vectors

e-1 = Hur - ubL
Hxrn - xbnL

 = D u
D xn

 = lim ¶∂u

¶∂xn

The stretch and the extension are scalar components of tensor quantities.

Three-dimensional strain
If the mental image we worked with in the previous section was that of an elastic string, elongated (or
shortened) in one dimension, we are now going to build on that experience to think of a continuous elastic
sheet that can be deformed in 3 dimensions.

Before we press on into 2- or 3-dimensional strain, we need to add to our understanding of matrices and, in
particular, the matrix representation of tensors. In this square matrix,

A 0 0
0 B 0
0 0 C

the part of the matrix that has all of the capital letters (A, B, C) is called the diagonal or axis of the matrix. It is
called a square matrix because it has the same number of rows as columns. Values that are in the positions
occuppied by 0s are said to be off-axis terms. If the values above the diagonal are equal to the values below
and directly across the diagonal, like this

A d e
d B f
e f C

the matrix is said to be a symmetric matrix. If values across the diagonal from each other have the same
magnitude but different sign, like

A d e
-d B f
-e -f C

the matrix is said to be an antisymmetric matrix. An asymmetric matrix, like

A d e
g B h
n -f C

lacks at least some of the symmetries we have just mentioned. Finally, if we define a matrix

M =
A d e
g B h
n -f C

,

the transpose of matrix M is represented by MT and is

3 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

MT =
A g n
d B -f
e h C

,

so the values along the diagonal are unchanged, but the values across the diagonal from each other are
swapped.

The deformation and displacement gradients that we previously explored for 1-D strain can be expanded into
their 3-D counterparts. The following equations relate to the displacement of a point with initial coordinates
{xo, yo, zo} to final coordinates {xn, yn, zn}, and vice versa. The Green transformation in 3-D is

xn
yn
zn

 =

¶∂xn
¶∂xo

¶∂xn
¶∂yo

¶∂xn
¶∂zo

¶∂yn
¶∂xo

¶∂yn
¶∂yo

¶∂yn
¶∂zo

¶∂zn
¶∂xo

¶∂zn
¶∂yo

¶∂zn
¶∂zo

xo
yo
zo

,

and the Cauchy transformation is

xo
yo
zo

 =

¶∂xo
¶∂xn

¶∂xo
¶∂yn

¶∂xo
¶∂zn

¶∂yo
¶∂xn

¶∂yo
¶∂yn

¶∂yo
¶∂zn

¶∂zo
¶∂xn

¶∂zo
¶∂yn

¶∂zo
¶∂zn

xn
yn
zn

.

The Lagrange displacement equation is

ux
uy
uz

 =

¶∂ux
¶∂xo

¶∂ux
¶∂yo

¶∂ux
¶∂zo

¶∂uy
¶∂xo

¶∂uy
¶∂yo

¶∂uy
¶∂zo

¶∂uz
¶∂xo

¶∂uz
¶∂yo

¶∂uz
¶∂zo

xo
yo
zo

,

and the Euler displacement equation is

ux
uy
uz

 =

¶∂ux
¶∂xn

¶∂ux
¶∂yn

¶∂ux
¶∂zn

¶∂uy
¶∂xn

¶∂uy
¶∂yn

¶∂uy
¶∂zn

¶∂u3
¶∂xn

¶∂u3
¶∂yn

¶∂u3
¶∂zn

xn
yn
zn

.

We make the simplifying assumption that the Lagrangian and Eulerian displacement gradients are approxi-
mately equal; that is,

¶∂ux
¶∂xo

¶∂ux
¶∂yo

¶∂ux
¶∂zo

¶∂uy
¶∂xo

¶∂uy
¶∂yo

¶∂uy
¶∂zo

¶∂uz
¶∂xo

¶∂uz
¶∂yo

¶∂uz
¶∂zo

 º

¶∂ux
¶∂xn

¶∂ux
¶∂yn

¶∂ux
¶∂zn

¶∂uy
¶∂xn

¶∂uy
¶∂yn

¶∂uy
¶∂zn

¶∂u3
¶∂xn

¶∂u3
¶∂yn

¶∂u3
¶∂zn

4 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

Hence, when strains are infinitesimal, the difference between the displacement gradients in the initial and final
states is not important. The matrix of extensions in the Lagrangian displacement matrix looks like

¶∂ux
¶∂xo

¶∂ux
¶∂yo

¶∂ux
¶∂zo

¶∂uy
¶∂xo

¶∂uy
¶∂yo

¶∂uy
¶∂zo

¶∂uz
¶∂xo

¶∂uz
¶∂yo

¶∂uz
¶∂zo

 =

exx exy exz
eyx eyy eyz
ezx ezy ezz

The elements of the matrix along the diagonal (exx, eyy, ezz) are equal to the extensions along the x, y and z
axes, respectively. So the diagonal terms are related to changes in length in each of three orthogonal
directions.

The remaining off-diagonal components are related to angular changes. The displacement gradient tensor is
an asymmetric tensor that represents both distortion (change in shape) and rotation. A tensor that repre-
sented rotation only would be antisymmetric; that is, exy = -eyx, exz = -ezx and eyz = -ezy. The asymmetry in

the displacement gradient tensor arises because of rotations and infinitesimal distortion.

Imagine a vector with finite length (that is, it is not infinitesimally short) that is initially parallel to the x axis
and is rotated through an angle q counter-clockwise around the z axis toward the y axis during deformation.
Then

tan q =
Duy

Dxo+Dux

Given the condition of infinitesimal strain, we know that Dux` Dxo ; that is, the component of the
displacement along the x axis is much smaller than the original length of the vector along the x axis.
Consequently,

tan q º
Duy
Dxo

and angle q is quite small. The tangent of very small angles is approximately equal to the angle itself,
expressed in radian measure, so

tan q º q º
Duy
Dxo

 = eyx

Component eyx measures the counter-clockwise (positive) rotation, around the z axis, of a vector that is

initially parallel to the x axis toward the y axis during deformation. Similarly, given a vector that is initially
parallel to the y axis, component exy is approximately equal to the angle that the vector rotates clockwise,

around the z axis, toward the x axis during deformation.

Thus far in our discussion, I have tried to keep the symbols I use as simple and uncomplimented as possible.
It is more typical to use tensor notation, sometimes called Einstein notation, to express relationships in a very
compact manner. Tensor notation uses subscript letters (typically i, j and k) to indicate coordinate directions
or combinations of coordinate directions. The details of how to unpack tensor notation are explained in the
appendix. For clarity in this introductory presentation, we will leave the expressions unpacked and explicitly
use the older x, y, z terminology for coordinate axes; however, we will employ the index subscript notation in
some variable names introduced below.

An asymmetric tensor can be decomposed into the sum of a symmetric tensor and an antisymmetric tensor.
The asymmetric Lagrangian displacement tensor eij is the sum of the symmetric infinitesimal strain tensor ¶εij
and the antisymmetric rotation tensor Wij .

¶εij =

exx
Iexy + eyxM

2
Hexz + ezxL

2

Ieyx + exyM

2
eyy

Ieyz + ezyM

2

Hezx + exzL
2

Iezy + eyzM

2
ezz

5 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

¶εij =

exx
Iexy + eyxM

2
Hexz + ezxL

2

Ieyx + exyM

2
eyy

Ieyz + ezyM

2

Hezx + exzL
2

Iezy + eyzM

2
ezz

Wij =

0
Iexy - eyxM

2
Hexz - ezxL

2

Ieyx - exyM

2
0

Ieyz - ezyM

2

Hezx - exzL
2

Iezy - eyzM

2
0

The antisymmetric rotation tensor Wij is also known as an axial vector. The axial vector is directed along the

rotational axis and the length of the axial vector is equal to the angle of rotation expressed in radian measure.
The Cartesian coordinates of the axial vector are given by {rx, ry, rz}, where

rx =
-IWyz -WzyM

2

ry = -HWxz -WzxL
2

rz =
-IWxy -WyxM

2

and the angle of rotation in radians is the length of the axial vector,

|r| = rx2 + ry2 + rz2

Example

Problem. Given the following displacement gradient tensor (eij), calculate the strain tensor (¶εij) and the

rotation matrix (Wij), and the magnitudes and orientations of the principal axes.

eij =

exx exy exz
eyx eyy eyz
ezx ezy ezz

 =
3 3 2
9 8 1
6 -1 5

Answer

The strain tensor is given by

¶εij =

exx
Iexy + eyxM

2
Hexz + ezxL

2

Ieyx + exyM

2
eyy

Ieyz + ezyM

2

Hezx + exzL
2

Iezy + eyzM

2
ezz

 =

3 H3+ 9L
2

H2+ 6L
2

H9+ 3L
2

8 H1+ H-1LL
2

H6+ 2L
2

HH-1L+ 1L
2

5

 =
3 6 4
6 8 0
4 0 5

6 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

¶εij =

exx
Iexy + eyxM

2
Hexz + ezxL

2

Ieyx + exyM

2
eyy

Ieyz + ezyM

2

Hezx + exzL
2

Iezy + eyzM

2
ezz

 =

3 H3+ 9L
2

H2+ 6L
2

H9+ 3L
2

8 H1+ H-1LL
2

H6+ 2L
2

HH-1L+ 1L
2

5

 =
3 6 4
6 8 0
4 0 5

and the rotation tensor is

Wij =

Wxx Wxy Wxz
Wyx Wyy Wyz
Wzx Wzy Wzz

 =

0
Iexy - eyxM

2
Hexz - ezxL

2

Ieyx - exyM

2
0

Ieyz - ezyM

2

Hezx - exzL
2

Iezy - eyzM

2
0

 =

0 H3- 9L
2

H2- 6L
2

H9- 3L
2

0 H1- H-1LL
2

H6- 2L
2

HH-1L- 1L
2

0

 =

0 -3 -2
3 0 1
2 -1 0

The antisymmetric rotation tensor (a.k.a., the axial vector) Wij is directed along the rotational axis, and the

length of the axial vector is equal to the angle of rotation expressed in radian measure. The Cartesian
coordinates of the axial vector are given by {rx, ry, rz}, where

rx =
-IWyz -WzyM

2
 = -H1- H-1LL

2
 = -1

ry = -HWxz -WzxL
2

 = -HH-2L- 2L
2

 = 2

rz =
-IWxy -WyxM

2
 = -HH-3L- 3L

2
 = 3

and the angle of rotation in radians is

|r| = rx2 + ry2 + rz2 = H-1L2 + 22 + 32 = 14 = 3.74166 radians

Using built-in Mathematica functions, we can determine the eigenvectors and eigenvalues. Eigenvectors
are vectors that coincide with the principal strain axes, and eigenvalues are the magnitudes of the
principal strains.

17.3 2-D horizontal strain rate from GPS velocity data

Introduction
The purpose of this section is to determine the horizontal strain in a triangular area between three non-
colinear GPS stations, given their initial locations as well as their north-south and east-west velocities. This
code is based largely on the explanations published in Allmendinger, Cardozo and Fisher (2012) and Cardozo
and Allmendinger (2009).

A stand-alone Macintosh application called SSPX performs this same analysis in a more comprehensive
manner, including estimates of uncertainty. SSPX is available for academic or research use for free via Nestor
Cardozo’s website at http://homepage.mac.com/nfcd/work /programs.html.

7 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

A stand-alone Macintosh application called SSPX performs this same analysis in a more comprehensive
manner, including estimates of uncertainty. SSPX is available for academic or research use for free via Nestor
Cardozo’s website at http://homepage.mac.com/nfcd/work /programs.html.

Input data
GPS data from the EarthScope Plate Boundary Observatory is managed by UNAVCO
(http://www.unavco.org/) and is available online for free at http://pbo.unavco.org/data. The full public
data holdings of UNAVCO are available via their “Data Archive Interface Version 2” at http://facility.unav-
co.org/data/dai2/app/dai2.html#.

I am going to search for data generated by one of the Plate Boundary Observatory’s permanent GPS stations
near Lake Tahoe along the California-Nevada border. If I don’t know which station I want to learn about, I
can go to the interactive PBO map (http://pbo.unavco.org/network/gps) and zoom in on an area of interest.
I find a green marker dot in my area of interest, indicating a station that is functioning normally, and click on
it for some initial information. The dot I chose is associated with station P150 (Martis Creek CN2008)
located near Kings Beach on the north side of Lake Tahoe.

Figure 17-1. Interactive Plate Boundary Observatory station site viewer, zoomed to the area around Lake
Tahoe. Inset window provides some data and a clickable link for more data about site P150. From http://p-
bo.unavco.org/network/gps.
———————————————————————————————————

Clicking on the dot gives me a little bit of name and location information, and a clickable link to more
information at http://pbo.unavco.org/station/overview/P150.

8 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

Figure 17-2. Plate Boundary Observatory Station 150 just north of Lake Tahoe. From http://pbo.unav-
co.org/station/photos/P150/.
———————————————————————————————————

The overview page provides me with the location of the site in the Stable North American Reference Frame
(SNARF), WGS84 coordinate system: latitude 39.292380598° and longitude -120.033853482° at an elevation
of 2619.0828 meters above the WGS84 datum. To compute the corresponding location in Universal
Transverse Mercator (utm) projection, I used an online conversion utility (e.g., http://www.uwgb.edu/dutch-
s/usefuldata/ConvertUTMNoOZ.HTM or http://home.hiwaay.net/~taylorc/toolbox/geography/geout-
m.html; to learn more about the conversion, go to http://www.uwgb.edu/dutchs/usefuldata/utmformu-
las.htm) . I can also click on the “Data Products” tab and access a variety of other data, including velocity
data. At http://pbo.unavco.org/ index.php/station/data/P150, I found detrended time-series plots that
indicated that P150 has an average instantaneous N-S velocity of 5.97±0.04 mm/yr (a positive value means
moving toward north), an E-W velocity of -11.07 ±0.03 mm/yr (-ve means moving toward west), and an up-
down velocity of -0.20±0.07 mm/yr (-ve means moving down).

9 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

Figure 17-3. Static plot of cleaned and detrended time-series plots with interpreted velocities relative to the
Stable North American Reference Frame (SNARF) from PBO GPS station P150. Accessed 25 March 2012
via http://pbo.unavco.org/index.php/station/data/P150.
———————————————————————————————————

For convenience, we compile the data in a 9 x 3 matrix in which each row corresponds to a different GPS
station and the columns contain the following data types : 1 = site number, 2 = longitude, 3 = latitude, 4 =
elevation (m, ellipsoid), 5 = UTM X coordinate, 6 = Y coordinate, 7 = N velocity (m/yr), 8 = E velocity, 9 =
up velocity.
The order in which the station data are presented in this matrix (i.e., which station corresponds to record 1, 2
or 3) is arbitrary.

In[1]:=
inputData =

146 -120.537284 39.337459 2347.844 712247.260 4357118.219 0.00715 -0.01025 -0.00181
149 -120.104975 39.60212988 2634.6887 748566.261 4387604.030 0.00555 -0.00933 -0.00167
150 -120.03385482 39.292380598 2619.0828 755806.266 4353418.463 0.00597 -0.01107 -0.00020

;

General explanation of the method
We would like to use data from GPS arrays to define the average instantaneous strain rate in a triangular area
between three GPS stations. We know the initial location (xo , yo), as well as the east-west instantaneous
velocity (ux) and the north-south instantaneous velocity (uy), of each GPS station. We do not know the

elements of the deformation gradient tensor (exx, exy, eyx, eyy) or the coordinates of the translation vector (tx,

ty). The underlying relationships in matrix form is

10 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

We would like to use data from GPS arrays to define the average instantaneous strain rate in a triangular area
between three GPS stations. We know the initial location (xo , yo), as well as the east-west instantaneous
velocity (ux) and the north-south instantaneous velocity (uy), of each GPS station. We do not know the

elements of the deformation gradient tensor (exx, exy, eyx, eyy) or the coordinates of the translation vector (tx,

ty). The underlying relationships in matrix form is

1ux
1uy
2ux
2uy
3ux
3uy

 =

1 0 1xo 1yo 0 0
0 1 0 0 1xo 1yo
1 0 2xo 2yo 0 0
0 1 0 0 2xo 2yo
1 0 3xo 3yo 0 0
0 1 0 0 3xo 3yo

tx
ty
exx
exy
eyx
eyy

Following the explanation in Allmendinger and others (2012, p. 156), the matrix equation above has the form
of

y = Mx

where y is a 1x6 matrix of known quantities (the instantaneous displacement/velocity vectors), x is a 1x6
matrix of unknown quantities (the translation vector and the deformation gradient tensor), and M is a 6x6
matrix of known values including zeros, ones and the location vector coordinates of the three GPS stations.
We need to rearrange this matrix equation so that all of the known quantities are collected on one side and
the unknowns are on the other side of the equation. This requires us to compute the inverse of M

x = M-1y

Mathematica has a built-in function to invert matrices, which we will employ in the form Inverse[M] = M-1.
Allmendinger and others (2012) state that for perfectly constrained cases like this notebook was designed to
handle, in which data from just three non-colinear GPS stations are used, the matrix can be inverted using LU
decomposition. Mathematica has a built-in process for LU decomposition via the function LUDecomposi-
tion[m].

What if we want to analyze velocity data from more than three GPS stations? A more generalized form of
the 2-D matrices provided above is given by

1ux
1uy
2ux
2uy
3ux
3uy

ª

nux
nuy

 =

1 0 1xo 1yo 0 0
0 1 0 0 1xo 1yo
1 0 2xo 2yo 0 0
0 1 0 0 2xo 2yo
1 0 3xo 3yo 0 0
0 1 0 0 3xo 3yo
ª ª ª ª ª ª

1 0 nxo nyo 0 0
0 1 0 0 nxo nyo

tx
ty
exx
exy
eyx
eyy

Here, the 2n×6 matrix (where n>3) is the M matrix that we must invert to compute values for the 6
unknowns on the right side of the equation. For non-square matrices reflecting over-constrained cases
with more GPS data than is minimally required to obtain a solution, Allmendinger and others (2012)
recommend using the following formulation that employs transpose M matrices (after Press and others,
1986, and Menke, 1984)
 x = [MT MD-1 MTy
The built-in Mathematica function PseudoInverse can also be used to invert both square and
rectangular matrices.

11 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

What if we want to analyze velocity data from more than three GPS stations? A more generalized form of
the 2-D matrices provided above is given by

1ux
1uy
2ux
2uy
3ux
3uy

ª

nux
nuy

 =

1 0 1xo 1yo 0 0
0 1 0 0 1xo 1yo
1 0 2xo 2yo 0 0
0 1 0 0 2xo 2yo
1 0 3xo 3yo 0 0
0 1 0 0 3xo 3yo
ª ª ª ª ª ª

1 0 nxo nyo 0 0
0 1 0 0 nxo nyo

tx
ty
exx
exy
eyx
eyy

Here, the 2n×6 matrix (where n>3) is the M matrix that we must invert to compute values for the 6
unknowns on the right side of the equation. For non-square matrices reflecting over-constrained cases
with more GPS data than is minimally required to obtain a solution, Allmendinger and others (2012)
recommend using the following formulation that employs transpose M matrices (after Press and others,
1986, and Menke, 1984)
 x = [MT MD-1 MTy
The built-in Mathematica function PseudoInverse can also be used to invert both square and
rectangular matrices.

Once the components of the deformation gradient tensor are known, we complete the 2-D process as
follows. Given the M-1 matrix we just computed, we have the components of the displacement gradient
tensor eij

eij =
exx exy
eyx eyy

The 2-D strain tensor is given by

¶εij =
exx

Iexy + eyxM

2

Ieyx + exyM

2
eyy

and the 2-D rotation tensor is

Wij =
0

Iexy - eyxM

2

Ieyx - exyM

2
0

The angle of rotation is equal to the length of vector |Wxy| = |Wyx|.

Computation
Insert known data into governing equation to find unknowns

In[2]:= matrixM =

1 0 inputData@@1, 5DD inputData@@1, 6DD 0 0
0 1 0 0 inputData@@1, 5DD inputData@@1, 6D
1 0 inputData@@2, 5DD inputData@@2, 6DD 0 0
0 1 0 0 inputData@@2, 5DD inputData@@2, 6D
1 0 inputData@@3, 5DD inputData@@3, 6DD 0 0
0 1 0 0 inputData@@3, 5DD inputData@@3, 6D

;

In[3]:= inverseM = Inverse@matrixMD;

In[4]:= matrixY = 88inputData@@1, 8DD<, 8inputData@@1, 7DD<,
8inputData@@2, 8DD<, 8inputData@@2, 7DD<,
8inputData@@3, 8DD<, 8inputData@@3, 7DD<<;

In Mathematica, matrix multiplication is done using a dot symbol -- that is, a period -- or by using the built-in
function Dot[m,k] where m and k are the names of the two matrices.

In[5]:= matrixX = Flatten@inverseM.matrixYD;

12 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

The matrix eij is the 2-D displacement gradient tensor

In[6]:= eij =
88matrixX@@3DD, matrixX@@4DD<, 8matrixX@@5DD, matrixX@@6DD<<;

In[7]:= displGradTensor = MatrixForm@eijD;

The matrix epsij is the 2-D Lagrangian strain tensor

In[8]:= epsij = 88eij@@1, 1DD, HHeij@@1, 2DD + eij@@2, 1DDL ê 2L<,
8HHeij@@2, 1DD + eij@@1, 2DDL ê 2L, eij@@2, 2DD<<;

In[9]:= lagrangeStrainTensor = MatrixForm@epsijD;

Rotation

omega12 is the rotation angle in degrees; positive is a counterclockwise rotation.

In[10]:= omega12 = HHeij@@1, 2DD - eij@@2, 1DDL ê 2L H180 ê pL;

Translation

transCoord is a list of the coordinates of the translation vector

In[11]:= transCoord = 8matrixX@@1DD, matrixX@@2DD<;

The length of the translation vector (transDistance) is given in meters.

In[12]:= transDistance = ,ItransCoord@@1DD2 + transCoord@@2DD2M;

unitTransVect is the unit vector that is coincident with the translation vector.

In[13]:= unitTransVect = 8HtransCoord@@1DD ê transDistanceL,
HtransCoord@@2DD ê transDistanceL<;

transAngle is the angle between the north-directed vector and the translation vector.

In[14]:= transAngle = ArcCos@northUnitVector.unitTransVectD H180 ê pL;

The azimuth of the translation vector (transAzimuth) is measured clockwise from north.

In[15]:= transAzimuth =
If@HunitTransVect@@1DD < 0L, H360 - transAngleL, transAngleD;

Greater and lesser horizontal extension axes

vectNorm2D and unitVector2D are two user-defined functions that determine the length of a 2-D vector
and find the unit vector corresponding to an arbitrary 2-D vector, respectively.

In[16]:= vectNorm2D@x_D := x.x ;

In[17]:= unitVector2D@x_D :=
8x@@1DD ê vectNorm2D@xD, x@@2DD ê vectNorm2D@xD<;

northUnitVector is defined as a unit vector that points north, and from which azimuths can be computed.

In[18]:= northUnitVector = 80, 1<;

13 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

eigenVects is the set of eigen vectors for the symmtrical Lagrangian strain tensor. They are unit vectors
that coincide with the principal axes of the strain tensor.

In[19]:= eigenVects = Eigenvectors@epsijD;

In[20]:= eigenVector1 = 8eigenVects@@1, 1DD, eigenVects@@1, 2DD<;

In[21]:= unitEVect1 = unitVector2D@eigenVector1D;

In[22]:= eigenVector2 = 8eigenVects@@2, 1DD, eigenVects@@2, 2DD<;

In[23]:= unitEVect2 = unitVector2D@eigenVector2D;

The eigenvalues are the magnitudes of the principal strains

In[24]:= axisLengths = Eigenvalues@epsijD;

The variable “a” is the length of the minimum extension axis of the 2-D horizontal strain ellipse; “b” is the
length of the maximum extension axis.

Variable a is the extension along the maximum extension axis, and variable a1 is the length of the corre-
sponding semi - major axis after deformation of a circle that had an initial radius of 1.

In[25]:= a = If@HAbs@axisLengths@@1DDD > Abs@axisLengths@@2DDDL,
axisLengths@@1DD, axisLengths@@2DDD;

In[26]:= a1 = 1 + a;

minExtAxis is the minimum extension axis, defined as being associated with the larger eigenvalue of the
two axisLengths.

In[27]:= minExtAxis = If@HAbs@axisLengths@@1DDD > Abs@axisLengths@@2DDDL,
unitEVect1, unitEVect2D;

angleA is the angle between the north-directed vector and the minimum extension axis.

In[28]:= angleA = ArcCos@northUnitVector.minExtAxisD H180 ê pL;

minExtAxisAz is a list providing both options for the azimuth of the minimum extension axis.

In[29]:= minExtAxisAz1 = If@HminExtAxis@@1DD < 0L, H360 - angleAL, angleAD;

In[30]:= minExtAxisAz2 = If@HminExtAxisAz1 > 180L,
minExtAxisAz1 - 180, minExtAxisAz1 + 180D;

In[31]:= minExtAxisAz = 8minExtAxisAz1, minExtAxisAz2<;

Variable b is the extension along the maximum extension axis, and variable b1 is the length of the corre-
sponding semi - major axis after deformation of a circle that had an initial radius of 1.

In[32]:= b = If@HAbs@axisLengths@@1DDD < Abs@axisLengths@@2DDDL,
axisLengths@@1DD, axisLengths@@2DDD;

In[33]:= b1 = 1 + b;

maxExtAxis is the maximum extension axis, defined as being associated with the smaller eigenvalue of the
two axisLengths.

In[34]:= maxExtAxis = If@HAbs@axisLengths@@1DDD > Abs@axisLengths@@2DDDL,
unitEVect2, unitEVect1D;

14 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

angleB is the angle between the north-directed vector and the maximum extension axis.

In[35]:= angleB = ArcCos@northUnitVector.maxExtAxisD H180 ê pL;

maxExtAxisAz is a list providing both options for the azimuth of the maximum extension axis.

In[36]:= maxExtAxisAz1 = If@HmaxExtAxis@@1DD < 0L, H360 - angleBL, angleBD;

In[37]:= maxExtAxisAz2 = If@HmaxExtAxisAz1 > 180L,
maxExtAxisAz1 - 180, maxExtAxisAz1 + 180D;

In[38]:= maxExtAxisAz = 8maxExtAxisAz1, maxExtAxisAz2<;

Area strain

The area of a circle that has a radius of r is equal to pr2, and the area of an ellipse with semi-major and semi-
minor axes a and b is equal to pab.

In[39]:= circleArea = p;

In[40]:= ellipseArea = p a1 b1;

In[41]:= areaStrain = HellipseArea - circleAreaL ê circleArea;

Prepare to plot the results

The angle between the X axis (that is, the east-west axis) of the original GPS-station triangle and the longer
principal axis is called “theta0”.

In[42]:= theta0 = If@HminExtAxis@@1DD < 0L,
HHp ê 180L H90 - HminExtAxisAz1 - 180LLL,
HHp ê 180L H90 - minExtAxisAz1LLD;

The angle theta combines theta0 with the rigid-body rotation omegaij so that the axes of the resulting plot
image are north-south and east-west.

In[43]:= theta = theta0 + Homega12 * Hp ê 180LL;

In[44]:= rotatedEllipse =
Table@8Ha1 Cos@tD Cos@thetaDL + Hb1 Sin@tD * H-Sin@thetaDLL,

Ha1 Cos@tD Sin@thetaDL + Hb1 Sin@tD Cos@thetaDL<,
8t, 0, 2 p, p ê 36<D;

The plot range should be at least a bit larger than the strain ellipse, and this is handled by a variable called
maxplot.

In[45]:= maxplot = 1.1 a1;

The first plot file (plot1) plots a black ellipse with semimajor axis length of “a”, semiminor axis length “b”,
and major axis inclined “theta” degrees relative to the east-directed vector.

In[46]:= plot1 = ListLinePlot@rotatedEllipse,
AspectRatio Ø 1, AxesLabel Ø 8"East", "North"<,
PlotRange Ø 88-maxplot, maxplot<, 8-maxplot, maxplot<<,
PlotStyle Ø 8Black<D;

The second plot file (plot2) plots a dashed green reference circle.

15 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

In[47]:= referenceCircle =
Table@8HCos@tD Cos@thetaDL + HSin@tD * H-Sin@thetaDLL,

HCos@tD Sin@thetaDL + HSin@tD Cos@thetaDL<,
8t, 0, 2 p, p ê 36<D;

In[48]:= plot2 = ListLinePlot@%, AspectRatio Ø 1,
PlotRange Ø 88-maxplot, maxplot<, 8-maxplot, maxplot<<,
PlotStyle Ø 8Thick, Dashed, Green<D;

The third plot file (plot3) creates a blue line along the major axis of the ellipse.

In[49]:= plot3 = ListLinePlot@88a1 Cos@thetaD, a1 Sin@thetaD<,
8-a1 Cos@thetaD, -a1 Sin@thetaD<<, AspectRatio Ø 1,

PlotRange Ø 88-maxplot, maxplot<, 8-maxplot, maxplot<<,
PlotStyle Ø 8Blue<D;

The fourth plot file (plot4) creates a red line along the minor axis of the ellipse.

In[50]:= plot4 = ListLinePlot@
88b1 Cos@theta + Hp ê 2LD, b1 Sin@theta + Hp ê 2LD<,
8-b1 Cos@theta + Hp ê 2LD, -b1 Sin@theta + Hp ê 2LD<<,

AspectRatio Ø 1, PlotRange Ø 88-maxplot, maxplot<,
8-maxplot, maxplot<<, PlotStyle Ø 8Red<D;

The fifth plot file (plot5) merges the previous four plot files into a single file for display.

In[51]:= plot5 = Show@plot2, plot1, plot3, plot4D;

Results
Stations used

In[52]:= 8inputData@@1, 1DD, inputData@@2, 1DD, inputData@@3, 1DD<

Out[52]= 8146, 149, 150<

Cartesian components of translation vector

In[53]:= transCoord

Out[53]= 8-0.207876, 0.107522<

Length (meters) and Azimuth (degrees) of translation vector

In[54]:= 8transDistance, transAzimuth<

Out[54]= 80.234038, 297.35<

Displacement gradient tensor

In[55]:= displGradTensor

Out[55]//MatrixForm=

-1.47675 µ 10-8 4.77711 µ 10-8

-2.86486 µ 10-8 -1.83532 µ 10-8

Lagrangian strain tensor

16 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

In[56]:= lagrangeStrainTensor

Out[56]//MatrixForm=

-1.47675 µ 10-8 9.56129 µ 10-9

9.56129 µ 10-9 -1.83532 µ 10-8

Magnitude and azimuth of maximum principal extension

In[57]:= 8b, maxExtAxisAz<

Out[57]= 9-6.83245 µ 10-9, 8230.31, 50.3102<=

Magnitude and azimuth of minimum principal extension

In[58]:= 8a, minExtAxisAz<

Out[58]= 9-2.62883 µ 10-8, 8320.31, 140.31<=

Area strain (dilation; negative strain indicates less area after deformation)

In[59]:= areaStrain

Out[59]= -3.31208 µ 10-8

Infinitesimal rotation (clockwise + ve)

In[60]:= omega12

Out[60]= 2.18926 µ 10-6

In[61]:= plot5

Out[61]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 17-4. Plot of the strain ellipse (black ellipse) relative to the coordinate axes oriented north-south
(vertical axis in plot) and east-west (horizontal axis). The axes are labeled in dimensionless strain. The red
axis is the minimum extension axis. The green dashed circle shows a circle prior to deformation, so the black
ellipse depicts that same circle after deformation.

17 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

———————————————————————————————————

17.4 Checking our results with SSPX

Introduction
The code presented above is based on Allmendinger, Cardozo and Fisher (2012) and Cardozo and All-
mendinger (2009), which also explain the basis for the algorithms implemented in SSPX. Hence, we can
check our code against the output of SSPX, given the same input data.

Input data
I created a text file called TahoeTest1.txt with the following content:

X 2 LL
146 -120.537284 39.337459 -0.01025 0.00715
149 -120.104975 39.60212988 -0.00933 0.00555
150 -120.03385482 39.292380598 -0.01107 0.00597

The header (first) line indicates that the input data do not include uncertainties (X), that we want a 2-D
solution (2) and the locations are provided in longitude latitude form (LL). The three data records include the
station identifier, longitude, latitude, E-W velocity (mm/yr) and N-S velocity (mm/yr) separated by spaces.

Running SSPX
The following is a bare-bones set of instructions for obtaining information that we can compare with our
results. Start SSPX. Go to the File menu and select Load Stations from text. Using the
appropriate browse window, navigate to the input data file (TahoeTest1.txt) and select it. Go to the
Strain menu and select Best Fit For All. Go back to the File menu and select Save Strain as txt,
and provide a name for the output file.

SSPX is a feature-rich program that provides graphics and text output, as well as an extensive help menu.
You should work your way through the other options so that you can take full advantage of its capabilities.

Comparison of results
Our translation vector: {-0.207876, 0.107522}

SSPX translation vector: {-2.078779e-01 ± 2.088447e-03, 1.075201e-01 ± 2.088447e-03}

Our displacement gradient tensor:
-1.47675µ10-8 4.77711µ10-8

-2.86486µ10-8 -1.83532µ10-8

SSPX displacement gradient tensor:

-1.476743 e - 08 ± 3.952435 e - 10 4.777148 e - 08 ± 4.917541 e - 10
-2.864858 e - 08 ± 3.952435 e - 10 -1.835277 e - 08 ± 4.917541 e - 10

Our Lagrangian strain tensor:
-1.47675µ10-8 9.56129µ10-9

9.56129µ10-9 -1.83532µ10-8

SSPX Lagrangian strain tensor:
-1.476743 e - 08 9.561450 e - 09
9.561450 e - 09 -1.835277 e - 08

Our magnitude and orientation of principal extensions:
 emax: -6.83245µ10-9 230.31° or 50.3102°
 emin: -2.62883µ10-8 320.31° or 140.31°

18 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

Our magnitude and orientation of principal extensions:
 emax: -6.83245µ10-9 230.31° or 50.3102°
 emin: -2.62883µ10-8 320.31° or 140.31°

SSPX magnitude and orientation of principal extensions.
 emax: -6.832045e-09 ± 8.713311e-10 50.31° ± 0.36°
 emin: -2.628815e-08 ± 1.566647e-11 320.31° ± 0.36°

Our volume strain: -3.31208µ10-8

SSPX volume strain: -3.312019e-08 ± 8.869975e-10

Our infinitesimal rotation axis: 2.18926µ10-6

SSPX infinitesimal rotation axis: 2.189274e-06 ± 2.764824e-0.9

SSPX provides an assessment of uncertainty that we have not yet incorporated; however, we have repro-
duced the results of SSPX with our Mathematica-based code with very minor differences.

Let’s clear the previous variables so that we can be certain that we are computing everything anew in the code
that follows.

In[62]:= Clear@inputData, matrixM, matrixY, matrixX, eij, epsij, omega12,
transDistance, unitTransVect, transAngle, transAzimuth,
northUnitVector, eigenVects, eigenVector1, unitEVect1,
eigenVector2, unitEVect2, axisLengths, a, b, minExtAxis,
angleA, minExtAxisAz1, minExtAxisAz2, minExtAxisAz,
maxExtAxis, angleB, maxExtAxisAz1, maxExtAxisAz2, circleArea,
ellipseArea, areaStrain, theta0, theta, rotatedEllipse,
referenceCircle, maxplot, plot1, plot2, plot3, plot4, plot5D;

17.5 Boiling out the fat: n-station version without uncertainties
The following is a bare-bones code in Mathematica to generate strain information from GPS velocity data for 3
or more stations, based on the preceding discussion.

In[63]:=
inputData =

146 -120.537284 39.337459 2347.844 712247.260 4357118.219 0.00715 -0.01025 -0.00181
149 -120.104975 39.60212988 2634.6887 748566.261 4387604.030 0.00555 -0.00933 -0.00167
150 -120.03385482 39.292380598 2619.0828 755806.266 4353418.463 0.00597 -0.01107 -0.00020
090 -119.799853081 39.572803815 1503.6541 774885.45 4 385237.69 0.00456 -0.00825 -0.00023

;

In[64]:= vectNorm2D@x_D := x.x ;

In[65]:= unitVector2D@x_D :=
8x@@1DD ê vectNorm2D@xD, x@@2DD ê vectNorm2D@xD<;

19 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

In[66]:= matrixM = Flatten@
Table@881, 0, inputData@@i, 5DD, inputData@@i, 6DD, 0, 0<,

80, 1, 0, 0, inputData@@i, 5DD, inputData@@i, 6DD<<,
8i, 1, Length@inputDataD<D, 1D;

matrixY = Flatten@Table@88inputData@@i, 8DD<,
8inputData@@i, 7DD<<, 8i, 1, Length@inputDataD<D, 1D;

matrixX = Flatten@PseudoInverse@matrixMD.matrixYD;
eij =

88matrixX@@3DD, matrixX@@4DD<, 8matrixX@@5DD, matrixX@@6DD<<;
epsij = 88eij@@1, 1DD, HHeij@@1, 2DD + eij@@2, 1DDL ê 2L<,

8HHeij@@2, 1DD + eij@@1, 2DDL ê 2L, eij@@2, 2DD<<;
omega12 = HHeij@@1, 2DD - eij@@2, 1DDL ê 2L H180 ê pL;

In[72]:= transDistance = ,ImatrixX@@1DD2 + matrixX@@2DD2M;

unitTransVect = 8HmatrixX@@1DD ê transDistanceL,
HmatrixX@@2DD ê transDistanceL<;

transAngle = ArcCos@northUnitVector.unitTransVectD H180 ê pL;
transAzimuth =

If@HunitTransVect@@1DD < 0L, H360 - transAngleL, transAngleD;

In[76]:= eigenVects = Eigenvectors@epsijD;
eigenVector1 = 8eigenVects@@1, 1DD, eigenVects@@1, 2DD<;
unitEVect1 = unitVector2D@eigenVector1D;
eigenVector2 = 8eigenVects@@2, 1DD, eigenVects@@2, 2DD<;
unitEVect2 = unitVector2D@eigenVector2D;
axisLengths = Eigenvalues@epsijD;

In[82]:= northUnitVector = 80, 1<;

In[83]:= a = If@HAbs@axisLengths@@1DDD > Abs@axisLengths@@2DDDL,
axisLengths@@1DD, axisLengths@@2DDD;

minExtAxis = If@HAbs@axisLengths@@1DDD > Abs@axisLengths@@2DDDL,
unitEVect1, unitEVect2D;

angleA = ArcCos@northUnitVector.minExtAxisD H180 ê pL;
minExtAxisAz1 = If@HminExtAxis@@1DD < 0L, H360 - angleAL, angleAD;
minExtAxisAz2 = If@HminExtAxisAz1 > 180L,

minExtAxisAz1 - 180, minExtAxisAz1 + 180D;
minExtAxisAz = 8minExtAxisAz1, minExtAxisAz2<;
b = If@HAbs@axisLengths@@1DDD < Abs@axisLengths@@2DDDL,

axisLengths@@1DD, axisLengths@@2DDD;
maxExtAxis = If@HAbs@axisLengths@@1DDD > Abs@axisLengths@@2DDDL,

unitEVect2, unitEVect1D;
angleB = ArcCos@northUnitVector.maxExtAxisD H180 ê pL;
maxExtAxisAz1 = If@HmaxExtAxis@@1DD < 0L, H360 - angleBL, angleBD;
maxExtAxisAz2 = If@HmaxExtAxisAz1 > 180L,

maxExtAxisAz1 - 180, maxExtAxisAz1 + 180D;
maxExtAxisAz = 8maxExtAxisAz1, maxExtAxisAz2<;

20 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

In[95]:= circleArea = p;
ellipseArea = p H1 + aL H1 + bL;
areaStrain = HellipseArea - circleAreaL ê circleArea;

In[98]:= theta0 =
If@HminExtAxis@@1DD < 0L, HHp ê 180L H90 - HminExtAxisAz1 - 180LLL,
HHp ê 180L H90 - minExtAxisAz1LLD;

theta = theta0 + Homega12 * Hp ê 180LL;

In[100]:= rotatedEllipse = Table@
8HH1 + aL Cos@tD Cos@thetaDL + HH1 + bL Sin@tD * H-Sin@thetaDLL,
HH1 + aL Cos@tD Sin@thetaDL + HH1 + bL Sin@tD Cos@thetaDL<,

8t, 0, 2 p, p ê 36<D;
referenceCircle = Table@

8HCos@tD Cos@thetaDL + HSin@tD * H-Sin@thetaDLL,
HCos@tD Sin@thetaDL + HSin@tD Cos@thetaDL<, 8t, 0, 2 p, p ê 36<D;

In[102]:= maxplot = 1.1 H1 + aL;

In[103]:= plot1 = ListLinePlot@rotatedEllipse,
AspectRatio Ø 1, AxesLabel Ø 8"East", "North"<,
PlotRange Ø 88-maxplot, maxplot<, 8-maxplot, maxplot<<,
PlotStyle Ø 8Black<D;

plot2 = ListLinePlot@referenceCircle, AspectRatio Ø 1,
PlotRange Ø 88-maxplot, maxplot<, 8-maxplot, maxplot<<,
PlotStyle Ø 8Thick, Dashed, Green<D;

plot3 = ListLinePlot@88H1 + aL Cos@thetaD, H1 + aL Sin@thetaD<,
8-H1 + aL Cos@thetaD, -H1 + aL Sin@thetaD<<, AspectRatio Ø 1,

PlotRange Ø 88-maxplot, maxplot<, 8-maxplot, maxplot<<,
PlotStyle Ø 8Blue<D;

plot4 = ListLinePlot@88H1 + bL Cos@theta + Hp ê 2LD,
H1 + bL Sin@theta + Hp ê 2LD<, 8-H1 + bL Cos@theta + Hp ê 2LD,
-H1 + bL Sin@theta + Hp ê 2LD<<, AspectRatio Ø 1,

PlotRange Ø 88-maxplot, maxplot<, 8-maxplot, maxplot<<,
PlotStyle Ø 8Red<D;

plot5 = Show@plot2, plot1, plot3, plot4D;

Results
Stations used

In[108]:= Table@inputData@@i, 1DD, 8i, 1, Length@inputDataD<D

Out[108]= 8146, 149, 150, 90<

Cartesian components of translation vector

In[109]:= 8matrixX@@1DD, matrixX@@2DD<

Out[109]= 8-0.264769, 0.117573<

Length (meters) and Azimuth (degrees) of translation vector

21 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

In[110]:= 8transDistance, transAzimuth<

Out[110]= 80.289699, 293.944<

Displacement gradient tensor

In[111]:= MatrixForm@eijD

Out[111]//MatrixForm=

2.23318 µ 10-9 5.7969 µ 10-8

-3.16519 µ 10-8 -2.01548 µ 10-8

Lagrangian strain tensor

In[112]:= MatrixForm@epsijD

Out[112]//MatrixForm=

2.23318 µ 10-9 1.31586 µ 10-8

1.31586 µ 10-8 -2.01548 µ 10-8

Magnitude and azimuth of maximum principal extension

In[113]:= 8b, maxExtAxisAz<

Out[113]= 98.31499 µ 10-9, 8245.194, 65.1939<=

Magnitude and azimuth of minimum principal extension

In[114]:= 8a, minExtAxisAz<

Out[114]= 9-2.62366 µ 10-8, 8335.194, 155.194<=

Area strain (dilation; negative strain indicates less area after deformation)

In[115]:= areaStrain

Out[115]= -1.79216 µ 10-8

Infinitesimal rotation (clockwise + ve)

In[116]:= omega12

Out[116]= 2.56745 µ 10-6

22 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

In[117]:= plot5

Out[117]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 16-5. Plot of the strain ellipse (black ellipse) relative to the coordinate axes oriented north-south
(vertical axis in plot) and east-west (horizontal axis). The axes are labeled in dimensionless strain. The red
axis is the minimum extension axis. The green dashed circle shows a circle prior to deformation, so the black
ellipse depicts that same circle after deformation.

17.6 References
Allmendinger, R.W., Loveless, J.P., Pritchard, M.E., and Meade, B., 2009, From decades to epochs --
Spanning the gap between geodesy and structural geology of active mountain belts: Journal of Structural
Geology, v. 31, p. 1409-1422, doi: 10.1016/j.jsg.2009.08.008.

Allmendinger, R.W., Cardozo, N, and Fisher, D.M., 2012, Structural Geology Algorithms, Vectors and
Tensors : Cambridge University Press, 289 p., ISBN 978 - 1 - 107 - 40138 - 9..

Cardozo, N., and Allmendinger, R.W., 2009, SSPX -- A program to compute strain from displacement/veloc-
ity data: Computers and Geosciences, v. 35, p. 1343-1357, doi: 10.1016/j.cageo.2008.05.008.

Ferguson, John, 1994, Introduction to Linear Algebra in Geology : London, Chapman & Hall, 203 p.,
ISBN 0 - 412 - 49350 - 0.

Fossen, Haakon, 2010, Structural Geology : New York, Cambridge University Press, 463 p., ISBN 978 - 0 -
521 - 51664 - 8.

Frank, F.C., Deduction of Earth strains from survey data: Bulletin of the Seismological Society of America, v.
56, no. 1, p. 35-42.

Jaeger, J.C., 1964, Elasticity, Fracture and Flow: Methuen, New York, 212 p.

Malvern, L.E., 1969, Introduction to the mechanics of a continuous medium: Englewood Cliffs, New Jersey,
Prentice-Hall, Inc., 713 p.,

Menke, W., 1984, Geophysical Data Analysis -- Discrete Inverse Theory: Orlando, Florida, Academic
Press.

23 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

Oertel, G., 1996, Stress and Deformation -- A Handbook on Tensors in Geology : New York, Oxford
University Press, 292 p., ISBN 0 - 19 - 509503 - 0.

Prescott, W.H., 1976, An extension of Frank’s method for obtaining crustal shear strains from survey data:
Bulletin of the Seismological Society of America, v. 66, no. 6, p. 1847-1853.

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., 1986, Numerical Recipes -- The Art of
Scientific Computing: Cambridge, Cambridge University Press.

Pollard, D.D., and Fletcher, R.C., 2005, Fundamentals of Structural Geology : New York, Cambridge
University Press, 500 p., ISBN 0 - 521 - 83927 - 0; see especially chapters 2 and 5.

Savage, J.C., Gan, W., and Svarc, J.L., 2001, Strain accumulation and rotation in the Eastern California Shear
Zone: Journal of Geophysical Research, v. 106, B10, P. 21,995-22,007.

Wolfram MathWorld has a web resource on eigenvectors and eigen decomposition available at
http : // mathworld.wolfram.com/Eigenvector.html.

Other Mathematica resources are available for download at

Emmanuel Amiot, “Eigenvectors by Hand” from The Wolfram Demonstrations Project http://demonstra-
tions.wolfram.com/EigenvectorsByHand/

Yaroslav Bulatov, “Linear Transformation with Given Eigenvectors” from The Wolfram Demonstrations
Project http://demonstrations.wolfram.com/LinearTransformationWithGivenEigenvectors/
—————————————————————————

Postscript

J.C. Savage offered me the following advice in an email message:

“For your purposes the formulation in spherical coordinates in my Eastern California shear zone paper is too
complicated. Nor do I believe it is worthwhile to include the vertical motions. Here is a simplified version
for the horizontal strains which is as accurate as justified by local (within 200 km) data :
Calculate homogeneous strain approximation to observed velocities
1. Convert the latitude and longitude of your stations to grid coordinates (northing and easting).Try Google
search under “convert latitude longitude to utm” for automatic conversions.
2. Translate to center of mass coordinates.x’ = x - xbar and y’ = y - ybar where xbar and ybar are the averages
of x and y, respectively.
3. I presume you have the east vE and north vN velocities of the stations from PBO. Then solve the
following equations (Jaeger, J.C., Elasticity, Fracture, and Flow, Methuen, London, 1964, p.39) by least
squares for the strain (exx, exy, and eyy) and rotation (w) rates :
vE = exx x’ + exy y’ - w y’
vN = exy x’ + eyy y’ + w x’
Notice I use tensor strain rates not engineering strain as used by Jaeger. There will be a pair of those
equations for each station, and you will need at least three stations to solve for the 4 unknowns. More
stations will increase the redundancy and give better estimates of standard deviations.
4. Calculate principal strain rates from exx, exy, and eyy. Setting up the least squares solution to the 6 or
more equations will depend to some extent upon the least squares program that you have.”.
—————————————————————————

Bill Hammond offered the following in an email message:

“Here’s what I normally do. I use a little matlab script I wrote a while back that takes the lat, lon, north
velocity, east velocity (and uncertainties), and it spits out the stain and rotation rates. This is based on the
appendix of Savage et al., 2001, which takes the spherical geometry of the Earth surface into account. You
probably wanted something simpler, maybe even in 2D, but I realized that by the time it was all written out in
2D, you might as well do it on a sphere. Perhaps what this subroutine lacks in simplicity is made up for by its
ease of use (if you have matlab).”

24 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

“Here’s what I normally do. I use a little matlab script I wrote a while back that takes the lat, lon, north
velocity, east velocity (and uncertainties), and it spits out the stain and rotation rates. This is based on the
appendix of Savage et al., 2001, which takes the spherical geometry of the Earth surface into account. You
probably wanted something simpler, maybe even in 2D, but I realized that by the time it was all written out in
2D, you might as well do it on a sphere. Perhaps what this subroutine lacks in simplicity is made up for by its
ease of use (if you have matlab).”

The MatLab script that Bill provided is available via
http://bearspace.baylor.edu/Vince_Cronin/www/GradStruct/GradStructHome12.html

25 | KinematicsCh17.nb

© 2012 by Vincent S. Cronin Version of 28 March 2012

