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12.1  Introduction
My impression is that most people don’t give any thought whatsoever to the question of where a given point on one plate goes, relative to
an observer across the boundary on an adjacent plate.  Most people don’t know or care that plates exist.  Of that small group of people who
have given any thought to the matter, my impression is that most think that the point moves in a circular trajectory around something called
an Euler pole that somehow stays fixed to the observer’s plate and to the moving point.  With all due respect, that idea cannot be correct
given the observed data on the relative motion of plates.

It is curious to note that the fact that finite relative motion cannot be circular has been well known since the early 1970s if not before.  The
trajectory of a point on one plate relative to another plate is almost always more complex than a circle, because the angular velocity vectors
related to a given plate are almost always non-coaxial.  And a plate cannot rotate in a circular finite trajectory around more than one axis to
which it is fixed at a time.

What, then, is the simplest model for the finite relative motion of plates that is permissible given the observed instantaneous plate-to-plate
motion data?  The answer (or at least an answer) follows from the observation that the observed instantaneous motion of one plate relative
to  another  might  be  considered  the  sum of  the  motion  of  one  plate  and  the  motion  of  the  other  plate,  both  discerned  from a  frame  of
reference that is external to the plates.  If EΩA  is constant and EΩB  is constant, AΩB  will be constant over the finite time interval.  During a
finite time interval, plate A can rotate around the EΩA  axis at a constant angular speed, plate B can rotate around the EΩB  axis at a constant
angular  speed,  and at  any  instant  during  that  time interval  the  angular  speed of  any  point  on plate  B observed from plate  A will  be  AωB
directed around the AΩB axis.  

If  you  are  sitting  on  plate  A  watching  a  point  on  plate  B  during  this  time  interval,  the  point  will  trace  a  regular  geometric  figure  that  is
simple, but not circular.

12.2  User-defined functions
We will use the following user-defined function developed in a previous chapter.

convert2Cart[lat_, long_] := Cos[lat Degree] Cos[long Degree],

Cos[lat Degree] Sin[long Degree], Sin[lat Degree];

unitVect3D[vect_] :=
{(vect[[1]] / Norm[vect]), (vect[[2]] / Norm[vect]), (vect[[3]] / Norm[vect])};

findGeogCoord[vect_] := Modulelat, long, a, b, c, d, e, f, a = ArcSin[vect[[3]]];

b = {vect[[1]], vect[[2]], 0};
c = IfAbs[vect[[1]]] < 1 × 10-14 && Abs[vect[[2]]] < 1 × 10-14,

{1, 1, 0}, {vect[[1]] / Norm[b], vect[[2]] / Norm[b], 0};

d = {1, 0, 0};
e = VectorAngle[c, d];
f = If[(vect[[2]] < 0), (-e), (e)];
lat = a (180 / π);
long = If

Abs[vect[[1]]] < 1 × 10-14 && Abs[vect[[2]]] < 1 × 10-14, 0, f (180 / π);

{lat, long};
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makeGreatCircle[normal_] := Modulea, x1, y1, z1, x2, y2, z2, j1, j2, j3, θ, b,

a = TableCosi Degree, Sini Degree, 0, i, 0, 360, 5;

x1 = {1, 0, 0};
y1 = {0, 1, 0};
z1 = {0, 0, 1};
z2 = normal;
x2 = unitVect3D[Cross[z2, z1]];
y2 = unitVect3D[Cross[z2, x2]];
j1 = {{x1.x2, y1.x2, z1.x2}, {x1.y2, y1.y2, z1.y2}, {x1.z2, y1.z2, z1.z2}};
θ = VectorAngle[z1, z2];
j2 = {1, 0, 0}, 0, Cos[θ], Sin[θ], 0, -Sin[θ], Cos[θ];

j3 = Inversej1;

b = Tablej3.j2.j1.ai, i, 1, Length[a];

b

circMotion[x_, angVelVect_, dT_] :=
Module{north, rotPole, w, xPole, yPole, m1, m2, m3, answer}, north = {0, 0, 1};

rotPole = unitVect3D[angVelVect];
w = Norm[angVelVect];
xPole = unitVect3D[rotPole⨯north]; yPole = unitVect3D[rotPole⨯xPole];
m1 = {{xPole[[1]], xPole[[2]], xPole[[3]]}, {yPole[[1]], yPole[[2]], yPole[[3]]},

{rotPole[[1]], rotPole[[2]], rotPole[[3]]}};
m2 = Cos[(w dT) Degree], -Sin[(w dT) Degree], 0,

Sin[(w dT) Degree], Cos[(w dT) Degree], 0, {0, 0, 1};

m3 = Inverse[m1];
answer = m3.m2.m1.x;
answer;

12.3  Data from NNR-MORVEL56
The  following  data  are  from  the  no-net-rotation  solution  derived  by  Argus  and  others  (2011)  based  on  the  MORVEL  velocity  model
(DeMets  and  others,  2010)  and  Peter  Bird’s  descriptions  of  56  plates  (Bird,  2003).   These  data  constitute  a  model  for  the  motion  of
individual  plates  in  a  reference  frame  that  is  external  to  the  plates.   The  abbreviations  in  the  first  column  are  co=Cocos,  nz=Nazca,
na=North  America,  nb=Nubia  (the  western  part  of  the  African  plate  of  Minster  and  Jordan,  1978),  and  pa=Pacific.   For  a  given
row/record,  the  second  column  contains  the  latitude  of  the  poles  around  which  the  corresponding  plate  moves  in  a  counter-clockwise
manner, the third column has the corresponding polar longitude, and the fourth column has the angular speed.

nnr =

co 26.93 -124.31 1.198
nz 46.23 -101.06 0.696
na -4.85 -80.64 0.209
nb 47.68 -68.44 0.292
pa -63.58 114.70 0.651

;

To access the datum in the first row, fourth column of the nnr data matrix defined above, we use the expression nnr[[1,4]] as follows

nnr[[1, 4]]

1.198

We will now extract motion data for several plates relative to the no-net-rotation external reference frame.

eΩco = nnr[[1, 4]] * convert2Cart[nnr[[1, 2]], nnr[[1, 3]]];

eΩnz = nnr[[2, 4]] * convert2Cart[nnr[[2, 2]], nnr[[2, 3]]];
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eΩna = nnr[[3, 4]] * convert2Cart[nnr[[3, 2]], nnr[[3, 3]]];

eΩnb = nnr[[4, 4]] * convert2Cart[nnr[[4, 2]], nnr[[4, 3]]];

eΩpa = nnr[[5, 4]] * convert2Cart[nnr[[5, 2]], nnr[[5, 3]]];

12.4  Gratuitous personal story
I  was a  graduate student with an idea.   The idea involved the motion of a  point  on one plate as  viewed from another plate over time.   I
already knew it could not be a circle.  I sought out a professor in the math department who might be able to help.  I sat in an uncomfortable
hardwood chair across the desk from him, and described what I thought I knew about the problem.  I said that an observer is on a plate that
is rotating at a constant rate around an axis.  The observer is looking at a point on a plate that is rotating at a constant rate around a different
axis.  The two axes are not moving relative to each other.  I asked about the name of the trajectory of that point.  I thought that if I knew
what the curve was called, I might find a mathematical description of the curve that would help me in my work.

He smiled, closing his eyes as he raised his face as if to look at the sky.  After what seemed like an eternity, eyes still closed, he said, “Now
let me get this straight.  You are sitting in a chair, gazing at a beautiful geisha who is standing in serene stillness on a round dias.  The dias is
rotating slowly.  She is at ease, looking into your eyes as you pass before her.  In the geisha’s hands and resting on her right shoulder is the
bamboo shaft of a parasol.  She is slowly twirling the shaft, and the broad paper parasol is rotating behind her head.  And on the parasol, off
to one side but rotating around the bamboo shaft, is a single red dot.  And you want to know the name of the curve traced by that red dot?”
He  opened  his  eyes  and  lowered  his  gaze  to  look  directly  at  me.   “Why,  my  poorly  educated  young  friend,  that  is  none  other  than  the
famous cycloid!”

A cycloid is a figure of rotation around a moving axis or, in spherical kinematics, around two axes.  The reason the math professor thought I
should know about it is that the outer planets move in figures that are like cycloids as observed from Earth over the course of years.  This
odd retrograde motion was the reason why the early celestial models for an Earth-centered universe required such elaborate machinery to
produce “epicycles.”  Copernicus had a partial  answer to the problem, involving circular motions of all  the planets around the Sun.  (The
orbital trajectories of planets around the sun are better described as ellipses.)  None-the-less, it remains true that the outer planets move in
looping  cycloidal  trajectories  as  observed  from Earth.   The  reason  is  that  the  outer  planets  revolve  around  the  Sun,  which  (from Earth)
appears  to  revolve around the Earth.   So Jupiter  revolves  around the Sun that,  in  turn,  revolves  around the center  of  Earth,  as  observed
from a vantage point on Earth’s surface.

12.5  Cycloidal finite motion
Let’s get back to finite plate kinematics.  Imagine a system in which an observer is fixed to plate A.  In a coordinate system that is external to
the plates, plate A moves in a positive (counter-clockwise) circular trajectory around pole EPA  at a constant angular speed of EωA.  In that
same external coordinate system, plate B moves in a positive (counter-clockwise) circular trajectory around pole EPB  at a constant angular
speed of EωB.  There is a bright red dot painted on plate B to serve as our reference point.  Over the finite time that we are modeling, the
two poles remain a constant distance from each other.

How do we model the motion of the red dot?  We know the location vector to the red dot as it exists today, at time = 0.  As the observer
looks at pole EPA over time, that pole remains fixed to the plate she is on.  When the observer turns her head to look at pole EPB over time,
that pole rotates around pole EPA in a negative (clockwise) direction at a speed of EωA.  Simultaneously, plate B is rotating around pole EPB
in a positive (counter-clockwise) direction, carrying with it the red dot.  Where is the red dot at any time other than today, as seen by the
observer?

Building the cycloid relative-motion model
We start with the location vector to our reference point (locVectRP), as defined in the geographic coordinate system {geogX, geogY,
geogZ}.  

latRP = 34.05; longRP = -118.24;

startRP = convert2Cart[latRP, longRP];

geogX = {1, 0, 0}; geogY = {0, 1, 0}; geogZ = {0, 0, 1};

We will use the Pacific plate as the observer’s plate and the Cocos plate as the moving plate, just so we can play with real data.  From the
input data, we need to specify the locations of the observer’s plate pole (obsZ), the moving plate’s pole (movZ) and their respective angular
speeds (obsω and movω).  
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obsZ = convert2Cart[nnr[[5, 2]], nnr[[5, 3]]];
movZ = convert2Cart[nnr[[1, 2]], nnr[[1, 3]]];
obsω = nnr[[5, 4]];
movω = nnr[[1, 4]];

Second, we need to define the model time (modT) at which the reference point’s position relative to the observer will be computed.  

modT = 1;

Third, we transform the geographic coordinates of the reference point so that we know the location vector to the reference point in one of
the two coordinate systems that are fixed to the two externally-defined poles of rotation (EPpa and EPco).  Specifically, we want to know the

coordinates  of  the  reference  point  at  modT  =  0  in  the  coordinate  system  in  which  the  pole  EPco  is  the  Zco  axis,  the  unit  vector  that
coincides with the vector cross product EPpa  ⨯ EPco is the Yco axis, and the Xco axis is found from Yco ⨯ Zco.  

movY = unitVect3D[obsZ⨯movZ]; movX = unitVect3D[movY⨯movZ];

j1temp =

movX.geogX movX.geogY movX.geogZ
movY.geogX movY.geogY movY.geogZ
movZ.geogX movZ.geogY movZ.geogZ

;

In this case,  the preceding j1temp  matrix can be simplified to the following matrix because the basis vectors of the positive geographic
axes all have components of either 0 or 1.  

j1 =
movX[[1]] movX[[2]] movX[[3]]
movY[[1]] movY[[2]] movY[[3]]
movZ[[1]] movZ[[2]] movZ[[3]]

;

Let’s prove that j1temp and j1 are the same matrices.  First, we will display the j1temp matrix created in the classic manner using dot
products between basis vectors.  

MatrixFormj1temp

0.621325 0.0566243 0.781504
-0.601167 0.674141 0.429106
-0.502546 -0.736429 0.452902

Now, we will display the j1 matrix that does not include dot products, and so will execute faster.  

MatrixFormj1

0.621325 0.0566243 0.781504
-0.601167 0.674141 0.429106
-0.502546 -0.736429 0.452902

They are the same, so we will use the j1 matrix because it is simpler and faster.  

Fourth, we construct a matrix we can use to rotate the reference point by an angle (Eωco * modT).  

j2 =
Cos[(-movω Degree) modT] Sin[(-movω Degree) modT] 0
-Sin[(-movω Degree) modT] Cos[(-movω Degree) modT] 0

0 0 1
;

Fifth, we transform the new coordinates of the rotated reference point to a coordinate system in which the pole EPpa  is the Zpa  axis,  the

unit vector that coincides with the vector cross product EPpa  ⨯ EPco is the Ypa axis, and the Xpa axis is found from Ypa ⨯ Zpa.  

obsY = unitVect3D[obsZ⨯movZ]; obsX = unitVect3D[obsY⨯obsZ];

Specifying this coordinate system, and hence the transformation matrix, takes a bit of work.  We determine the value and sign of the angle γ
between the poles to the moving and observer’s plates.  The range of γ is between -180° and 180°.  The angle γ is measured in the direction
from the  pole  of  the  moving  plate  to  the  pole  of  the  observer’s  plate.   An  anti-clockwise  rotation  around  the  vector  result  of  the  cross
product  EΩslower  ⨯  EΩfaster  (where  Eωslower  ≤  Eωfaster)  yields  a  positive  value  of  γ.   In  our  case,  the  angular  speed  of  the  observer’s  plate
(Pacific) is slower than that of the moving plate (Cocos).  

In  our  case,  the  angular  speed  of  the  observer’s  plate  (Pacific)  is  slower  than  that  of  the  moving  plate  (Cocos).   Hence,  the  vector  cross
product  EΩpa  ⨯ EΩco  defines the axis of rotation, and this axis is coincident with movY.  (Would it have been coincident with movY if the

observer was on the Cocos plate rather than on the Pacific plate?) 

What is an efficient way to determine the sign of the angle γ?  If the obsZ axis is found by a positive rotation around movY from movZ,
then obsZ will be within 90° of the movX axis.  If the obsZ axis is a negative rotation around movY from movZ, then obsZ will be more
than 90° away from the movX axis.  So to define the sign of the rotation angle, we measure the angle between obsZ and movX.
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What is an efficient way to determine the sign of the angle γ?  If the obsZ axis is found by a positive rotation around movY from movZ,
then obsZ will be within 90° of the movX axis.  If the obsZ axis is a negative rotation around movY from movZ, then obsZ will be more
than 90° away from the movX axis.  So to define the sign of the rotation angle, we measure the angle between obsZ and movX.

a = VectorAngle[obsZ, movX];

If[a < (π / 2), (s = 1), (s = (-1))];

γ = (s) (VectorAngle[movZ, obsZ]);

The matrix  j3  reflects  a  rotation of  coordinate  axes  around a  common Y axis  from a  system in  which the  pole  to  the  moving plate  lies
along the Z axis to a system in which the pole to the observer’s plate lies along the Z axis.  

j3 =
Cos[γ] 0 -Sin[γ]

0 1 0
Sin[γ] 0 Cos[γ]

;

Sixth,  we  find  the  coordinates  of  the  rotated  reference  point  in  a  coordinate  system  that  is  rotated  around  EPpa  by  an  angle  (-  Eωpa  *

modT).  

j4 =
Cos[(obsω Degree) modT] Sin[(obsω Degree) modT] 0
-Sin[(obsω Degree) modT] Cos[(obsω Degree) modT] 0

0 0 1
;

Seventh, we define a transformation matrix to return us to the Cartesian geographic coordinate system.  We start with the traditional dot-
product method for defining the transformation matrix

j5temp =

obsX.geogX obsY.geogX obsZ.geogX
obsX.geogY obsY.geogY obsZ.geogY
obsX.geogZ obsY.geogZ obsZ.geogZ

;

MatrixFormj5temp

-0.777193 -0.601167 -0.185929
-0.618163 0.674141 0.404239
-0.117673 0.429106 -0.895556

then use the “cut-to-the-chase” method (j5) recognizing that the geogX, geogY and geogZ basis vectors have components that are all
either 0 or 1

j5 =
obsX[[1]] obsY[[1]] obsZ[[1]]
obsX[[2]] obsY[[2]] obsZ[[2]]
obsX[[3]] obsY[[3]] obsZ[[3]]

;

MatrixFormj5

-0.777193 -0.601167 -0.185929
-0.618163 0.674141 0.404239
-0.117673 0.429106 -0.895556

As we saw before,  these two matrices are the same, so we will  use the simpler formulation (j5)  to avoid having to compute those 9 dot
products.   The  result  will  be  the  location  vector  (endRP)  to  the  red  dot  after  modT  million  years  in  a  coordinate  system  fixed  to  the
observer.

endRP = j5.j4.j3.j2.j1.startRP;

We finish by converting the location vector to standard geographic coordinates.   Actually,  they are not really standard geographic coordi-
nates, but rather they are geographic coordinates as they might have been etched onto the observer’s plate today and carried with the plate
during finite motion.  We do this because the initial question was “where will the point on the Cocos plate be relative to the Pacific plate in
1 million years.”  It is simply convenient to have a map of the fixed Pacific plate with today’s geographic coordinate system represented, and
then locate the original and final positions of the reference point relative to that map.

result = findGeogCoord[endRP]

{33.9303, -117.952}
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findGeogCoord[startRP]

{34.05, -118.24}

Testing the cycloid relative-motion model
If our model is consistent, the distance from the reference point to the pole EPco  should remain constant for all model times.  We need to
be able to track the EPco  pole, which is moving in a circular trajectory around the EPpa  pole.  Let’s build a model for the motion of pole

EPco  (a.k.a.  movZ)  relative  to  the  Pacific  plate.   Come  to  think  of  it,  that  is  exactly  what  we  did  in  chapter  5,  section  4,  so  the  general
solution should be familiar.  What we will do here is notice that if we set movω to zero, matrix J2 becomes an identity matrix and essen-
tially drops out of the cycloid equation.

startPole = movZ;

endPole = j5.j4.j3.j1.startPole;

VectorAngle[endPole, endRP]

0.154119

VectorAngle[startPole, startRP]

0.154119

So the angular distance between the pole and the reference point remains the same.  What about the angular distance between the two poles?

VectorAngle[startPole, obsZ]

2.22667

VectorAngle[endPole, obsZ]

2.22667

As we might have suspected, the angular distance between pole EPpa  and pole EPco  remains the same during finite displacement.  It seems

that we have created an internally consistent model of simple cycloidal relative motion.  Bueno.

12.6  The cycloid module
To make our lives simpler, and to leave us time to play with the dog, pet the cat, nag the kids/students, and love (or appease) our significant
others, we construct a module to compute the cycloid solution.  The input data are the full angular velocity vector for the observer’s plate
(obsΩ_), the full angular velocity vector for the moving plate that the observer is looking at (movΩ_), the location vector to the reference
point (refPt_), and the model time (t_).
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cycloidobsΩ_, movΩ_, refPt_, t_ := Module

a, b, c, d, e, f, g, h, i, j, k, l, m1, m2, m3, m4, m5, n, p, answer, a = {1, 0, 0};

b = {0, 1, 0};
c = {0, 0, 1};
d = unitVect3D[obsΩ];
e = Norm[obsΩ];
f = unitVect3D[movΩ];
g = Norm[movΩ];
h = unitVect3Dd⨯f;

i = h;
j = unitVect3D[h⨯d];
k = unitVect3Di⨯f;

m1 = {k[[1]], k[[2]], k[[3]]}, i[[1]], i[[2]], i[[3]], f[[1]], f[[2]], f[[3]];

m2 = Cos[(-g Degree) t], Sin[(-g Degree) t], 0,

-Sin[(-g Degree) t], Cos[(-g Degree) t], 0, {0, 0, 1};

l = VectorAngle[d, k];
If[l < (π / 2), (n = 1), (n = (-1))];
p = (n) VectorAnglef, d;

m3 = Cos[p], 0, -Sin[p], {0, 1, 0}, Sin[p], 0, Cos[p];

m4 = Cos[(e Degree) t], Sin[(e Degree) t], 0,

-Sin[(e Degree) t], Cos[(e Degree) t], 0, {0, 0, 1};

m5 = j[[1]], h[[1]], d[[1]], j[[2]], h[[2]], d[[2]], j[[3]], h[[3]], d[[3]];

answer = m5.m4.m3.m2.m1.refPt;
answer;

Let’s see if it gives us the same answers as we derived above, which were called result.

result

{33.9303, -117.952}

findGeogCoordcycloid[eΩpa, eΩco, startRP, modT]

{33.9303, -117.952}

The cycloid module is a good tool.

Exercise 12-1.   The Pacific plate moves slowly to the northwest relative to someone on the North American plate.   City Hall  in Los
Angeles is  built  on the Pacific  plate,  sort  of.   Actually,  it  is  built  atop a deep basin created in the borderland between the Pacific  and
North American plates.  But it is located west of the San Andreas fault, and we shall simplify reality just like most textbooks and assume
that THE SAN ANDREAS FAULT IS THE PLATE BOUNDARY between the Pacific and North American plates.  (That’s not really
true.   The  San  Andreas  fault  is  one  very  important  part  of  a  complex  boundary  zone,  but...)   Relative  to  the  North  American  plate,
where will LA City Hall be in 1 million years if its current location is 34.05°N, 118.24°W?  Copy the cycloid module into a new Mathemat-
ica notebook and use the data from NNR-MORVEL56 to compute the new location.

Exercise 12-2.  City Hall in San Francisco is located at 37.78°N, 122.41°W, on the North American plate, sort of.  Play along with the
fantasy...  Use the Mathematica notebook you developed in the previous problem to estimate, to the nearest half-million years, when City
Hall in Los Angeles will pass most closely by City Hall in San Francisco.  You might want to add a bit of code to determine the distance
between SF City Hall and the output of your previous model at different input times.  When the city halls experience their closest pass,
what general direction will LA City Hall be relative to SF City Hall?  ...and why would that be interesting?
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12.7  Finite motion of AΩB relative to plate A
Where would the pole paPco be after our brief model displacement of 1 million years?  Relative to the observer on the Pacific plate, the EΩpa
angular velocity vector is unchanged, but the EΩco vector is displaced by a rotation around the EΩpa axis.  The new EΩco vector is given by

endΩco = movω endPole

{-0.595518, -0.889476, 0.537954}

and because paΩco  = EΩco  - EΩpa, we can compute the new location of pole paPco.  The initial angular velocity vector paΩco  at model time

= 0 is given by

paΩco0 = eΩco - eΩpa

{-0.48101, -1.1454, 1.12558}

and the angular velocity vector at model time = 1 is given by

paΩco1 = endΩco - eΩpa

{-0.474478, -1.15264, 1.12096}

The initial Pacific-Cocos pole location was

findGeogCoordunitVect3D[paΩco0]

{42.178, -112.78}

and the final location after 1 million years, relative to the fixed Pacific plate, is 

findGeogCoordunitVect3D[paΩco1]

{41.9652, -112.374}

The reference point started out an angular distance of  

VectorAngle[paΩco0, startRP] / Degree

9.18837

degrees from the instantaneous pole of relative motion between the Pacific and Cocos plates, but it ended up an angular distance of   

VectorAngle[paΩco1, endRP] / Degree

9.15475

degrees  from the  instantaneous  pole  of  relative  motion between the  Pacific  and Cocos  plates  after  1  million  years.   The  angular  distance
from the reference point to the pole decreased, so the tangential velocity of the reference point relative to the Pacific plate has decreased.  It
has decelerated.

Exercise 12-3.  Between today and the time when San Francisco and Los Angeles converge, does the model indicate that the tangential
velocity of Los Angeles will accelerate, decelerate or remain constant?  Support your answer with appropriate computation.

12.8  Cycloidal trajectories
We all know what a circle looks like.  What does a cycloid on a sphere look like?  To provide a couple of answers to that question, we will
use a triangle to represent the moving plate,  and look at its  motion from -500 Myr to +500 Myr.   First,  we will  model the triangle as the
moving Pacific plate relative to North America, then we will look at the moving North America relative to the Pacific Plate.  We assume that

EΩna and EΩpa (and hence naΩpa) are constant during that finite time interval.

(In the traditional model of circular finite motion, it would be unnecessary to construct two models -- one each from the perspective of the
Pacific and North American plates.  The trajectories would look the same in both cases.  That is not true of cycloidal finite relative motion.)  

First, we define the apices of a triangle (tri) that we will use to represent the Pacific plate,  

tri = {convert2Cart[34.05, -118.24], convert2Cart[28.25, -120.45],
convert2Cart[32.5, -125.25], convert2Cart[34.05, -118.24]};
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and then use the cycloid module to find the triangle’s position relative to the North American plate at 50 Myr intervals from -500 Myr to
+500 Myr.  

triangles = TablecycloideΩna, eΩpa, trii, j, j, -500, 500, 50, i, 1, 4, 1;

Second, we will use the cycloid module to define the trajectory of each of the apices from -500 Myr to +500 Myr, using a finer step interval
of 5 Myr.  

curve1 = TablecycloideΩna, eΩpa, tri[[1]], i, i, -500, 500, 5;

curve2 = TablecycloideΩna, eΩpa, tri[[2]], i, i, -500, 500, 5;

curve3 = TablecycloideΩna, eΩpa, tri[[3]], i, i, -500, 500, 5;

Third, we find the locations of the moving plate’s pole and the pole of relative motion between the two plates at 50 Myr intervals.  

naΩpa = eΩpa - eΩna;

naPpa = unitVect3D[naΩpa];

paPna = -naPpa;

ePpa = unitVect3D[eΩpa];

ePna = unitVect3D[eΩna];

relativePoles = TablecircMotionnaPpa, -eΩna, i, i, -500, 500, 50;

movPlatePoles = TablecircMotionePpa, -eΩna, i, i, -500, 500, 50;

Fourth, we prepare the output graphics files, and show the resulting graphic.  

out1 = Graphics3DOpacity[0.75], Sphere[{0, 0, 0}, 1],

AspectRatio → 1, BoxRatios → {1, 1, 1}, PlotRange → All,
PlotRangePadding → 0.1, ColorOutput → GrayLevel, Lighting → "Neutral";

out2 = Graphics3DTableLinetrianglesi, i, 1, Lengthtriangles;

out3 = Graphics3DLineTablecurve1i, i, 1, Length[curve1];

out4 = Graphics3DLineTablecurve2i, i, 1, Length[curve2];

out5 = Graphics3DLineTablecurve3i, i, 1, Length[curve3];

markers1 = tri;

out6 = ListPointPlot3Dmarkers1, AspectRatio → 1, BoxRatios → {1, 1, 1}, PlotStyle →

DirectiveRed, PointSize[Large], PlotRange → All, PlotRangePadding → 0.1;

out7 = ListPointPlot3DrelativePoles, AspectRatio → 1, BoxRatios → {1, 1, 1},

PlotStyle → Green, PlotRange → All, PlotRangePadding → 0.1;

out8 = ListPointPlot3DmovPlatePoles, AspectRatio → 1, BoxRatios → {1, 1, 1},

PlotStyle → Blue, PlotRange → All, PlotRangePadding → 0.1;

markers2 = {ePna, -ePna};

out9 = ListPointPlot3Dmarkers2, AspectRatio → 1,

BoxRatios → {1, 1, 1}, PlotStyle → DirectiveBrown, PointSize[Large],

PlotRange → All, PlotRangePadding → 0.1;
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Show[out1, out2, out3, out4, out5, out6, out7, out8, out9]

Figure 12-1.  Modeled cycloid trajectory of the Pacific plate (triangle) relative to the North American plate from -500 Myr to +500 Myr at
50 Myr intervals, with corresponding flow lines.  Red dots are on the apices of the reference triangle at model time = 0 (today).  Blue dots
mark the pole of the Pacific plate in the NNR reference frame, brown dots mark the North American pole, and green dots mark the pole of
relative motion between the two plates -- all plotted at 50 Myr intervals

There  are  a  number  of  important  features  of  the  output  to  notice.   First,  notice  that  the  triangles  are  not  evenly  spaced,  but  that  their
spacing seems to vary in some sort of periodic manner.  They are closer together in the looping cusp of the curve, and are farther apart away
from the cusp.  That indicates a change in tangential velocity of the moving plate relative to the observer’s plate.  Second, notice that the
flow  lines  of  each  of  the  vertices  of  the  triangle  are  a  slightly  different  shape.   Each  point  on  the  moving  plate  would  trace  a  different
trajectory from every other point to which it is rigidly coupled.  As a consequence of this, there is no shape of plate boundary fault along
which there could be purely strike slip without convergence or divergence.  Third, notice that the pole of the Pacific plate (blue dots) and
the pole  of  relative  motion between the  two plates  (green dots)  both move in  concentric  circles  around the  pole  of  the  North  American
plate (brown dots).

Now, let’s reverse the experiment and model how the North American plate would move relative to the Pacific plate during this same time
interval.  We will use the same triangle to model this relative motion.

triangles = TablecycloideΩpa, eΩna, trii, j, j, -500, 500, 50, i, 1, 4, 1;

curve4 = TablecycloideΩpa, eΩna, tri[[1]], i, i, -500, 500, 5;

curve5 = TablecycloideΩpa, eΩna, tri[[2]], i, i, -500, 500, 5;

curve6 = TablecycloideΩpa, eΩna, tri[[3]], i, i, -500, 500, 5;

relativePoles = TablecircMotionpaPna, -eΩpa, i, i, -500, 500, 50;

movPlatePoles = TablecircMotionePna, -eΩpa, i, i, -500, 500, 50;

out10 = Graphics3DTableLinetrianglesi, i, 1, Lengthtriangles;

out11 = Graphics3DLineTablecurve4i, i, 1, Length[curve1];

out12 = Graphics3DLineTablecurve5i, i, 1, Length[curve2];

out13 = Graphics3DLineTablecurve6i, i, 1, Length[curve3];

markers3 = tri;

out14 = ListPointPlot3Dmarkers3, AspectRatio → 1, BoxRatios → {1, 1, 1}, PlotStyle →

DirectiveRed, PointSize[Large], PlotRange → All, PlotRangePadding → 0.1;
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out15 = ListPointPlot3DrelativePoles, AspectRatio → 1, BoxRatios → {1, 1, 1},

PlotStyle → Green, PlotRange → All, PlotRangePadding → 0.1;

out16 = ListPointPlot3DmovPlatePoles, AspectRatio → 1, BoxRatios → {1, 1, 1},

PlotStyle → Brown, PlotRange → All, PlotRangePadding → 0.1;

markers4 = {ePpa, -ePpa};

out17 = ListPointPlot3Dmarkers4, AspectRatio → 1,

BoxRatios → {1, 1, 1}, PlotStyle → DirectiveBlue, PointSize[Large],

PlotRange → All, PlotRangePadding → 0.1;

Show[out1, out10, out11, out12, out13, out14, out15, out16, out17]

Figure 12-2.  Modeled cycloid trajectory of the North American plate (triangle) relative to the Pacific plate from -500 Myr to +500 Myr at
50 Myr intervals, with corresponding flow lines.  Red dots are on the apices of the reference triangle at model time = 0 (today).  Blue dots
mark the pole of the Pacific plate, brown dots mark the North American pole, and green dots mark the pole of relative motion between the
two plates -- all plotted at 50 Myr intervals

The uneven spacing of the triangles representing the North American plate is even more dramatic in this figure than in the previous figure,
illustrating that the tangential velocity of the North American plate relative to the Pacific plate is not constant.  The change in the triangle’s
orientation in the cusp is dramatic.

12.9  Afterword
I  am  sometimes  asked  to  compare  the  results  of  modeling  based  cycloidal  finite  motion  with  modeling  based  on  circular  finite  motion.
While I understand that people would like to understand how an unfamiliar model might differ from a familiar model,  this comparison is
problematic  for  me.   In  a  world  where  the  instantaneous  plate-to-plate  angular  velocity  vectors  are  not  coaxial,  circular  finite  motion
between the plates is not an admissible model.  Comparing an admissible model with an inadmissible model seems like a waste of time to
me.

The  cycloid  finite  motion  model  as  presented  above  is  the  simplest  finite  motion  model  that  can  be  used  to  extend  from  instantaneous
motion data to finite motion in cases where the plate-to-plate angular velocity vectors are not coaxial.  Does that mean that the motion of a
point on one plate relative to another plate is necessarily cycloidal?  No, it does not.  Given additional data as might be provided by marine
magnetic  anomalies  or  other  finite  motion  indicators  preserved  in  the  geologic  record,  the  full  finite  motion  of  selected  plates  might  be
discerned.  We will see how this can be done in future chapters.
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