Measuring with a Brunton compass	
A. Initial definitions1. Direction measured in a horizontal plane: trend or bearing, or trend/bearing unit vector	
2. Orientation of a line in space: plunge and trend, or plunge unit vector	
3. Orientation of an inclined plane in space: strike and dip, or dip vector, or unit normal vector	
complete components are strike azimuth, dip angle, and dip direction	
Right-hand rule strike and dip	
4. Orientation of a line on a plane: rake (or pitch) plus the orientation of the plane.	
 B. The different types of compasses geoscientists use to determine direction in the field 1. Quadrant compass (0-90°-0-90°-0) a. Examples of a bearing or trend: S64E or N15E or N48W or S72W Draw the examples, with north toward the top of the page 	
b. Examples of plunge and trend: 42, S78E or 65, N14E or 16, N48W or 52, S18W Draw the examples, with north toward the top of the page	

c. Examples of strike and dip: N23W, 32NE or N23W, 45SW or N58E, 16NW or N58E, 78SE

Draw the examples, with north toward the top of the page

- 2. Azimuth compass (0-360°)
 - a. Examples of a bearing or trend: 15° or 134° or 213° or 332° *Draw the examples, with north toward the top of the page*
 - b. Examples of plunge and trend: 42, 142 or 65, 35 or 16, 327 or 52, 234 *Draw the examples, with north toward the top of the page*
 - c. Examples of strike and dip:
 - (1) Freeform examples: 15, 56NW or 195, 56NW (the same plane) *Draw the examples, with north toward the top of the page*
 - (2) Right-Hand Rule (RHR) examples: 48, 16 or 113, 78 or 197, 62 or 223, 37 *Draw the examples, with north toward the top of the page*
- C. Bearing vectors
 - 1. How to find the bearing vector (non-unit vector, as in pace-and-compass mapping) $v_1 = \{l_0 \sin[\theta_1], l_0 \cos[\theta_1]\}$

where l_0 is the length of the vector and θ_1 is the angle from the north-directed vector, measured clockwise from north.

PRACTICE: What is the vector associated with a 114 m straight path toward 213°?

2. How to find the bearing vector (unit vector)

$$v_2 = \{\sin[\theta_2], \cos[\theta_2]\}$$

where l_0 is the length of the vector and θ_2 is the angle from the north-directed vector, measured clockwise from north.

PRACTICE: What is the unit vector associated with a bearing of 123°?

- 3. You are dropped by aliens on a perfectly horizontal grassy field that stretches for kilometers in all directions. If you go 100 m toward 38° and then 230 m toward 79°, and you want to return by the most direct (straight-line) route, how far would you walk and in what direction?
 - a. Add the vectors together
 - b. Find the length of the resultant vector
 - c. Find the unit vector that coincides with the vector result of step b
 - d. Find the azimuth of the vector result of step c.
- C. Trend and plunge ...

Note that it is the unfortunate convention in the geosciences that a positive plunge is down and a negative plunge is up. This proves that paleo-geoscientists were not good at either math of physics, as if we needed more proof.

1. ...of a line (non-directional)

QUESTION What is the unit vector along a line plunging 52° and trending 207°

a. Draw a vertical cross section that includes the vector.

the ve	ector.
c. Draw a	a horizontal map (or plan) view
d. Deterr	mine the 3D vector components of the vector
QUESTIC	tor (directional) N What is the unit vector along a line plunging -23° and trending 48° a vertical cross section that includes the vector.
b. Find tl vecto	he mathematical expression for the z component (upward component) of the r.
c. Draw a	a horizontal map (or plan) view
d. Deterr	mine the 3D vector components of the vector

D. Coordinates of a unit dip vector (always has a downward directed component) with a plunge & trend of 63, 142?
E. Given a dip vector with a plunge & trend of 63, 142, what is the reference strike vector and azimuth, using the RHR?
F. Given the RHR strike and dip, what is the down-directed vector normal to the plane? What is its unit vector? What is the unit vector of its inverse?