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Introduction

If we have a cubic free body that is arbitrarily oriented in a stress field and is in a state of static equilib-
rium, and we know the tractions (normal and shear stresses) acting on each of its infinitesimal faces, 
we can use eigen decomposition of the traction tensor to define the orientation and magnitude of the 

corresponding principal stresses.  The orientation of the orthogonal basis vectors that are parallel to 

the principal axes are the eigenvectors of the symmetric traction tensor, and the magnitudes of the 

principal stresses (σ1, σ2, σ3) are the corresponding eigenvalues.
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We will use the Mathematica function ������������ to define the eigenvectors of matrix s:
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Similarly, we can use the Mathematica function ����������� to define the eigenvectors of matrix s
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Instructions
This code requires six input data :  the stress acting normal to the X plane (σxx), the stress acting 

normal to the Y plane (σyy), the stress acting normal to the Z plane (σzz), the shear stress acting on 

the X plane in the Y direction (σxy), the shear stress acting on the X plane in the Z direction (σxz), and 

the shear stress acting on the Y plane in the Z direction (σyz).  In accord with the convention generally 



used by geologists, a compressive normal stress has a positive sign, tensional normal stress is negative, 
and a shear stress that tends to make a body rotate in an anticlockwise direction is a positive shear 
stress.

Input
 In the input section below, type the stress values on the appropriate lines of code (which are shaded 

light red) a�er the "=" sign and before the ";" mark.

The variable σxx is the normal stress acting on the X plane -- the plane that is perpendicular to the X 

coordinate axis of the free body diagram.  By the structural geologists' sign convention, a compressive 

normal stress is a positive value, and a tensional normal stress is a negative value.

σxx = 2;

The variable σyy is the normal stress acting on the Y plane -- the plane that is perpendicular to the Y 

coordinate axis of the free body diagram.  By the structural geologists' sign convention, a compressive 

normal stress is a positive value, and a tensional normal stress is a negative value.

σyy = 1.5;

The variable σzz is the normal stress acting on the Z plane -- the plane that is perpendicular to the Z 

coordinate axis of the free body diagram.  By the structural geologists' sign convention, a compressive 

normal stress is a positive value, and a tensional normal stress is a negative value.

σzz = 1.7;

The variable σxy is the shear stress acting on the X plane in the Y direction.  By the structural geolo-

gists' sign convention, a shear stress has a positive value if it tends to rotate the body in an anticlock-
wise direction around the origin of the coordinate system.

σxy = 0.7;
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The variable σxy is the shear stress acting on the X plane in the Y direction.  By the structural geolo-

gists' sign convention, a shear stress has a positive value if it tends to rotate the body in an anticlock-
wise direction around the origin of the coordinate system.

σxz = 0.3;

The variable σxy is the shear stress acting on the X plane in the Y direction.  By the structural geolo-

gists' sign convention, a shear stress has a positive value if it tends to rotate the body in an anticlock-
wise direction around the origin of the coordinate system.

σyz = 0.5;

Computation
σyx = σxy;

σzx = σxz;

σzy = σyz;

s =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

;

The eigenvectors that result from the next step are unit vectors that are colinear with the principal axes 

of the ellipse.  Consequently, the three eigenvectors ({result1[[1, 1]], result1[[1, 2]], result1[[1, 3]]}, 
{result1[[2, 1]], result1[[2, 2]], result1[[2, 3]]} and {result1[[3, 1]], result1[[3, 2]], result1[[3, 3]]}) are 

perpendicular to each other.  The eigenvalues are the magnitudes of the principal stresses.

principalAxes = Eigenvectors[s];

axisLengths = Sort[Eigenvalues[s], Greater];

The variable "a" is the length of the major axis of the principal ellipse;  "b" is the length of the intermedi-
ate axis;  "c" is the length of the minor axis.

σ1 = axisLengths[[1]];

σ2 = axisLengths[[2]];

σ3 = axisLengths[[3]];

Results
The eigenvectors are 
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principalAxes

{{-0.690205, -0.561248, -0.456746},
{-0.579638, 0.0509703, 0.813279}, {0.433171, -0.826076, 0.360501}}

The magnitude of the greatest principal stress (σ1) in megaPascals is

σ1

2.76774

The corresponding axial vector is

vectorσ1 = σ1 principalAxes[[1, 1]],

σ1 principalAxes[[1, 2]], σ1 principalAxes[[1, 3]]

{-1.91031, -1.55339, -1.26415}

The magnitude of the intermediate principal stress (σ2) in megaPascals is

σ2

1.51752

The corresponding axial vector is

vectorσ2 = σ2 principalAxes[[2, 1]],

σ2 principalAxes[[2, 2]], σ2 principalAxes[[2, 3]]

{-0.879612, 0.0773485, 1.23417}

The magnitude of the least principal stress (σ3) in megaPascals is

σ3

0.914739

The corresponding axial vector is

vectorσ3 = σ3 principalAxes[[3, 1]],

σ3 principalAxes[[3, 2]], σ3 principalAxes[[3, 3]]

{0.396239, -0.755645, 0.329764}

Graphics
The parametric equations of an ellipsoid can be written as
x = a Cos[u] Sin[v]
y = b Sin[u] Sin[v]
z = c Cos[v]
for u in[0, 2 π] and v in[0, π].
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test1 = Table{σ1 Cos[u] Sin[v], σ2 Sin[u] Sin[v], σ3 Cos[v]},

u, 0, 2 π, π  20, v, 0, π, π  20;

test2 = Flatten[test1, 1];

ListPointPlot3D[test2, AspectRatio → 1,
PlotRange → {{-σ1, σ1}, {-σ1, σ1}, {-σ1, σ1}}]
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test4 = ParametricPlot3D[{σ1 Cos[u] Sin[v], σ2 Sin[u] Sin[v], σ3 Cos[v]},
{u, 0, 2 π}, {v, 0, π}, ColorFunction → "GrayTones",
PlotStyle → Specularity[White, 50], AxesLabel → {"Greatest Principal Stress",

"Intermediate Principal Stress", "Least Principal Stress"}, Mesh → None,
AspectRatio → 1, PlotRange → {{-σ1, σ1}, {-σ1, σ1}, {-σ1, σ1}}]
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The graphics code to produce the ellipsoid came from Eric W.Weisstein, 2009,

http : // mathworld.wolfram.com / notebooks / Surfaces / Ellipsoid.nb.

For more information,

see Eric' sMathWorldentry http : // mathworld.wolfram.com / Ellipsoid.html.

Wolfram MathWorld has a web resource on eigenvectors and eigen decomposition available at 
http : // mathworld.wolfram.com/Eigenvector.html

The corresponding resource on ellipsoids is available at
http://mathworld.wolfram.com/Ellipsoid.html

Color schemes used in Mathematica are displayed at
http://reference.wolfram.com/mathematica/guide/ColorSchemes.html

Other Mathematica resources are available for download at 
Emmanuel Amiot, "Eigenvectors by Hand" from The Wolfram Demonstrations Project  http://demonstra-
tions.wolfram.com/EigenvectorsByHand/
Yaroslav Bulatov, "Linear Transformation with Given Eigenvectors" from The Wolfram Demonstrations 

Project  http://demonstrations.wolfram.com/LinearTransformationWithGivenEigenvectors/

EigenDecomposition3D.nb  ���7

http://mathworld.wolfram.com/notebooks/Surfaces/Ellipsoid.nb
http://mathworld.wolfram.com/Ellipsoid.html

