GPS Strain Analysis

Also known as...

Average-Crustal-Strain Analysis for Instantaneous/Infinitesimal Horizontal Strain Using GPS Velocity/
Dispacement Data

Give students an overview of the process

Give students an overview of the process

Tell them how to find and interpret the input data for the process

Give students an overview of the process

Tell them how to find and interpret the input data for the process

Show them how to perform the analytical process

Give students an overview of the process

Tell them how to find and interpret the input data for the process

Show them how to perform the analytical process

Explain the meaning of the results of the analytical process

Give students an overview of the process

Tell them how to find and interpret the input data for the process

Show them how to perform the analytical process

Explain the meaning of the results of the analytical process

Apply the results in a useful manner

Give students an overview of the process

Tell them how to find and interpret the input data for the process

Show them how to perform the analytical process

Explain the meaning of the results of the analytical process

Apply the results in a useful manner

Have students execute the process using pre-selected data that you (the teacher) have worked through.

Give students an overview of the process

Tell them how to find and interpret the input data for the process

Show them how to perform the analytical process

Explain the meaning of the results of the analytical process

Apply the results in a useful manner

Have students execute the process using pre-selected data that you (the teacher) have worked through.

Finally, have them select their own data based on personal interest and execute the process.

- An example of the analysis
- **How to find PBO GPS data**
- Notice which reference frame is used
- Acquire data for 3 sites
- Using one of the strain calculators
- What the output means
- Interpreting the results in the context of local/regional geology

GPS Strain & Earthquakes Unit 3: Finding location and velocity data for PBO GPS stations

Original activity by Vince Cronin (Baylor University). Revisions by Beth Pratt-Sitaula (UNAVCO).

Analyzing the velocities recorded at different GPS stations can give significant insights into plate tectonic motion, earthquake hazards, volcanic hazards, groundwater removal, and more.

GPS data can be acquired from a variety of different research groups around the world, but some the most accessible and easy to use GPS data comes from the EarthScope Plate Boundary Observatory (PBO), which is managed by UNAVCO. The data are available online for free at https://www.unavco.org/instrumentation/networks/status/pbo/gps. In this exercise you will learn one method for downloading GPS station location and velocity data.

Worked Example: Finding PBO GPS data in the Oregon Coast Ranges

Finding station locations in latitude-longitude coordinates

We will search for data generated by one of the PBO's permanent GPS stations above the Cascadia subduction zone in northwest Oregon. If we do not know which station we want to learn about, we can go to the interactive PBO map and zoom-in on our area of interest (https://www.unavco.org/instrumentation/networks/status/pbo/gps). We find several green marker dots along the coastline. Clicking on any of the dots will provide some initial information. The dot we chose (Figure 1) is associated with station P395 (Rose_LodgeOR2006) located west of Salem in northwest Oregon, Clicking on the dot gives us a boy that provides the

home * instrumentation * networks * pbo

Instrumentation

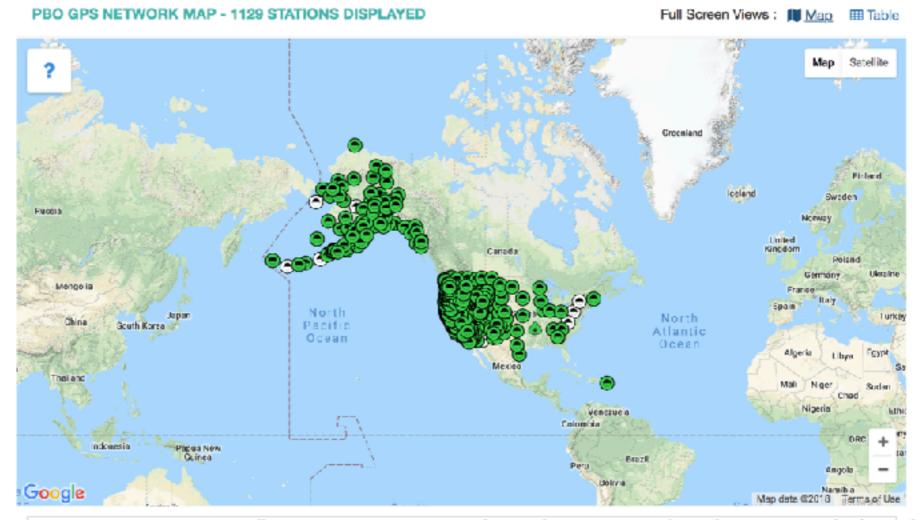
Help with Instrumentation

Network Monitoring

- · All Networks & Stations
- All Real-time GNSS/GPS Networks
- PBO Networks
- · PBO GNSS/GPS Network
- PBO GN3S/GPS Real-time
- PBO Strainmeter Network
- · PBO Seismic Network
- Polar GNSS/GPS Networks
- · ANET
- GNET
- · Polar Networks State of Health
- NASA-GGN GNSS/GPS Network
- COCONet GNSS/GPS Network
- COCONet GNSS/GPS Real-time
- TLALOCNet GNSS/GPS Network
- TLALOCNet GNSS/GPS Realtime
- Principal Investigator GNSS/GPS Stations

Related Links

· PBO Project Overview


PBO GPS Stations Network Monitoring

This section of our web site provides network monitoring (instrument state of health) information for the PBO network of GNSS/GPS instruments to our engineers, principal investigators, and the public at large. See the PBO project page for more information about the PBO network.

Please note: This area is not for data access, please see the Data section of our website to access data acquired from these instruments

See also:

Show only PBO Real-time GNSS/GPS Stations

https://www.unavco.org/instrumentation/networks/status/pbo/gps

Instrumentation

· Help with Instrumentation

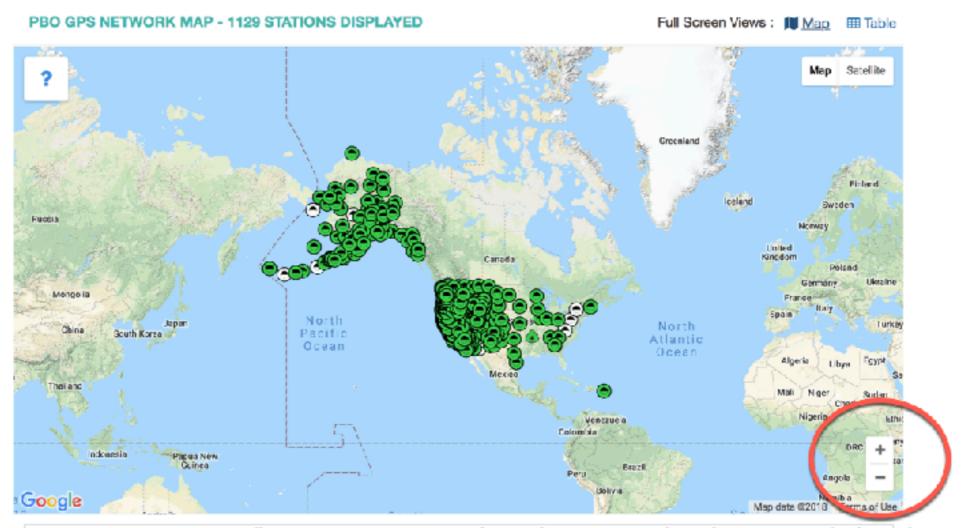
Network Monitoring

- · All Networks & Stations
- All Real-time GNSS/GPS Networks
- PBO Networks
- · PBO GNSS/GPS Network
- PBO GNSS/GPS Real-time
- · PBO Strainmeter Network
- · PBO Seismic Network
- Polar GNSS/GPS Networks
- ANET
- GNET
- Polar Networks State of Health
- NASA-GGN GNSS/GPS Network
- COCONet GNSS/GPS Network
- COCONet GNSS/GPS Real-time
- TLALOCNet GNSS/GPS Network
- TLALOCNet GNSS/GPS Realtime
- Principal Investigator GNSS/GPS Stations

Related Links

· PBO Project Overview

PBO GPS Stations Network Monitoring


home * instrumentation * networks * pbo

This section of our web site provides network monitoring (instrument state of health) information for the PBO network of GNSS/GPS instruments to our engineers, principal investigators, and the public at large. See the PBO project page for more information about the PBO network.

Please note: This area is not for data access, please see the <u>Data</u> section of our website to access data acquired from these instruments

See also:

Show only PBO Real-time GNSS/GPS Stations

https://www.unavco.org/instrumentation/networks/status/pbo/gps

home > instrumentation + networks > pbo

Instrumentation

Help with Instrumentation

Network Monitoring

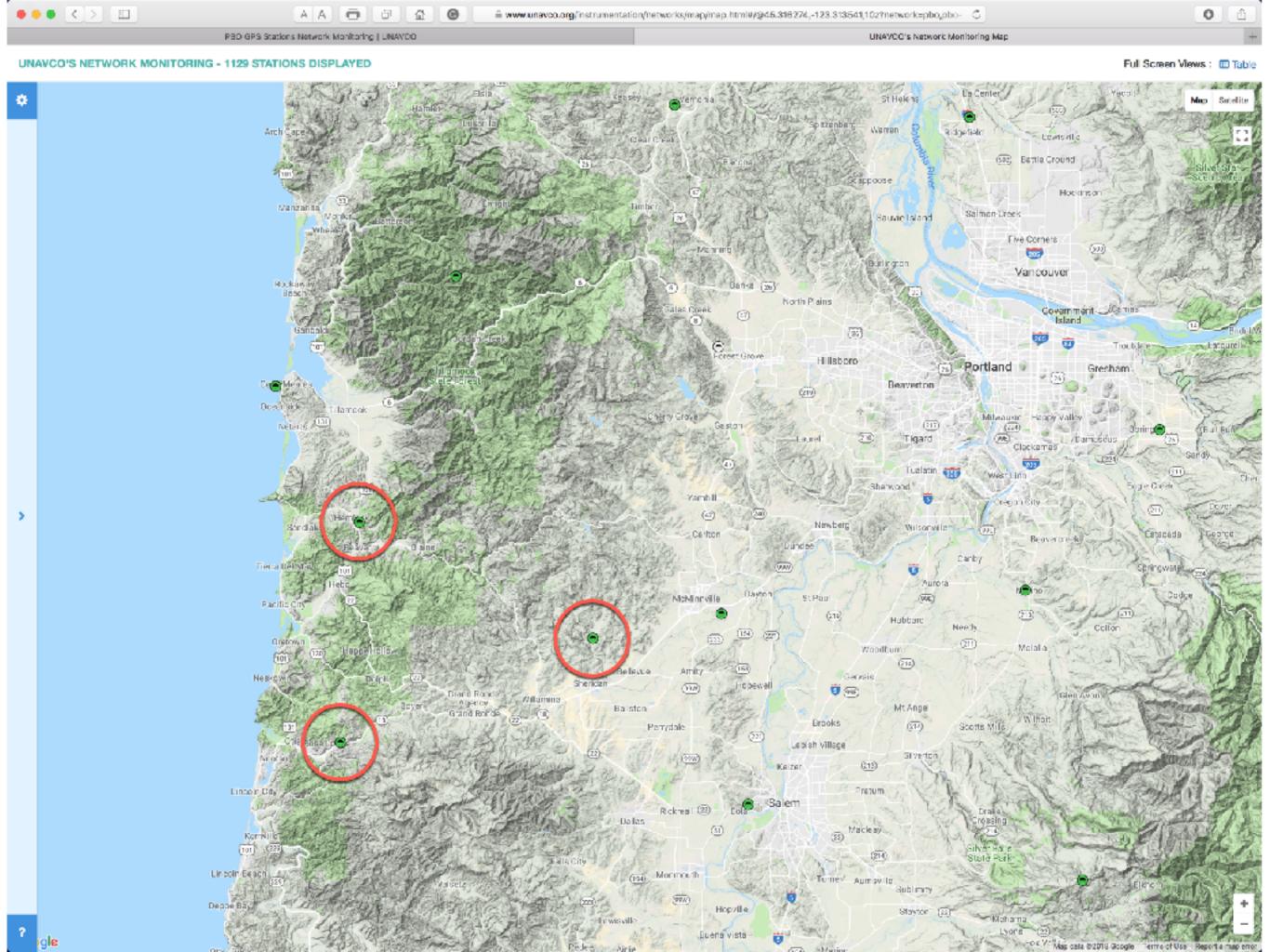
- · All Networks & Stations
- All Real-time GNSS/GPS Networks
- PBO Networks
- · PBO GNSS/GPS Network
- PBO GN3S/GPS Real-time
- · PBO Strainmeter Network
- PBO Seismic Network
- Polar GNSS/GPS Networks
- · ANET
- GNET
- Polar Networks State of Health
- NASA-GGN GNSS/GPS Network
- COCONet GNSS/GPS Network
- · COCONet GNSS/GPS Real-time
- TLALOCNet GNSS/GPS Network
- TLALOCNet GNSS/GFS Realtime
- Principal Investigator GNSS/GPS Stations

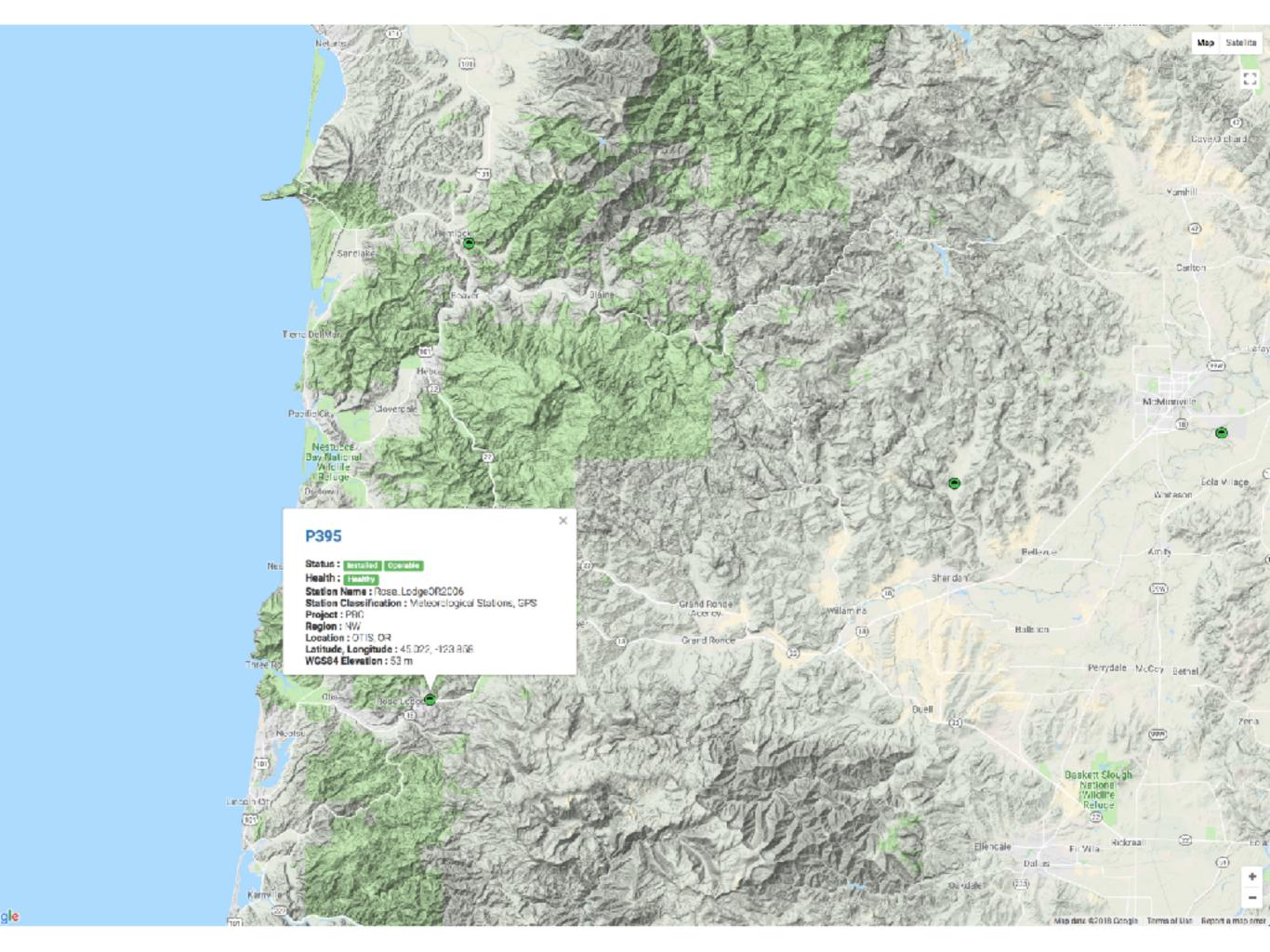
Related Links

· PBO Project Overview

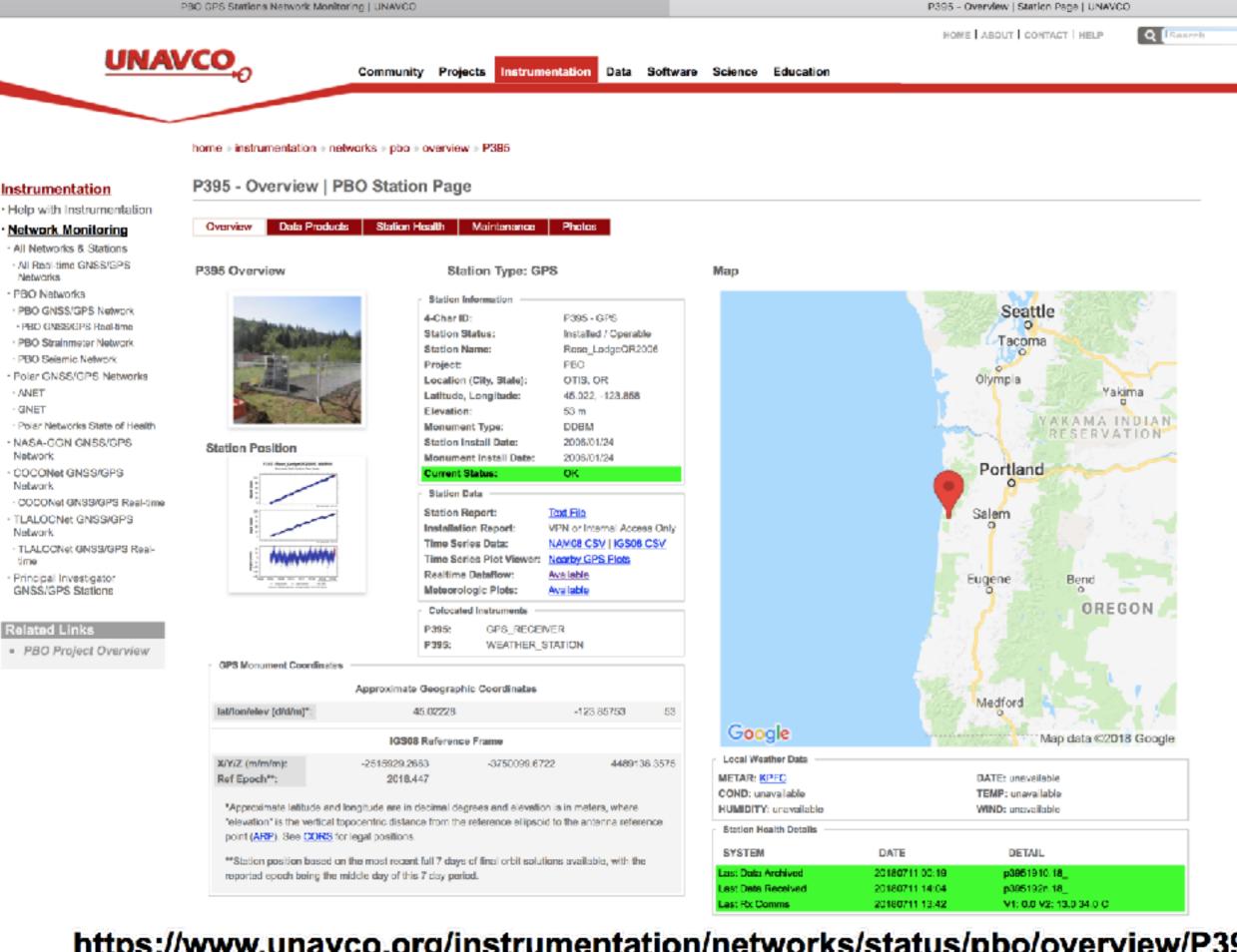

PBO GPS Stations Network Monitoring

This section of our web site provides network monitoring (instrument state of health) information for the PBO network of GNSS/GPS instruments to our engineers, principal investigators, and the public at large. See the PBO project page for more information about the PBO network.

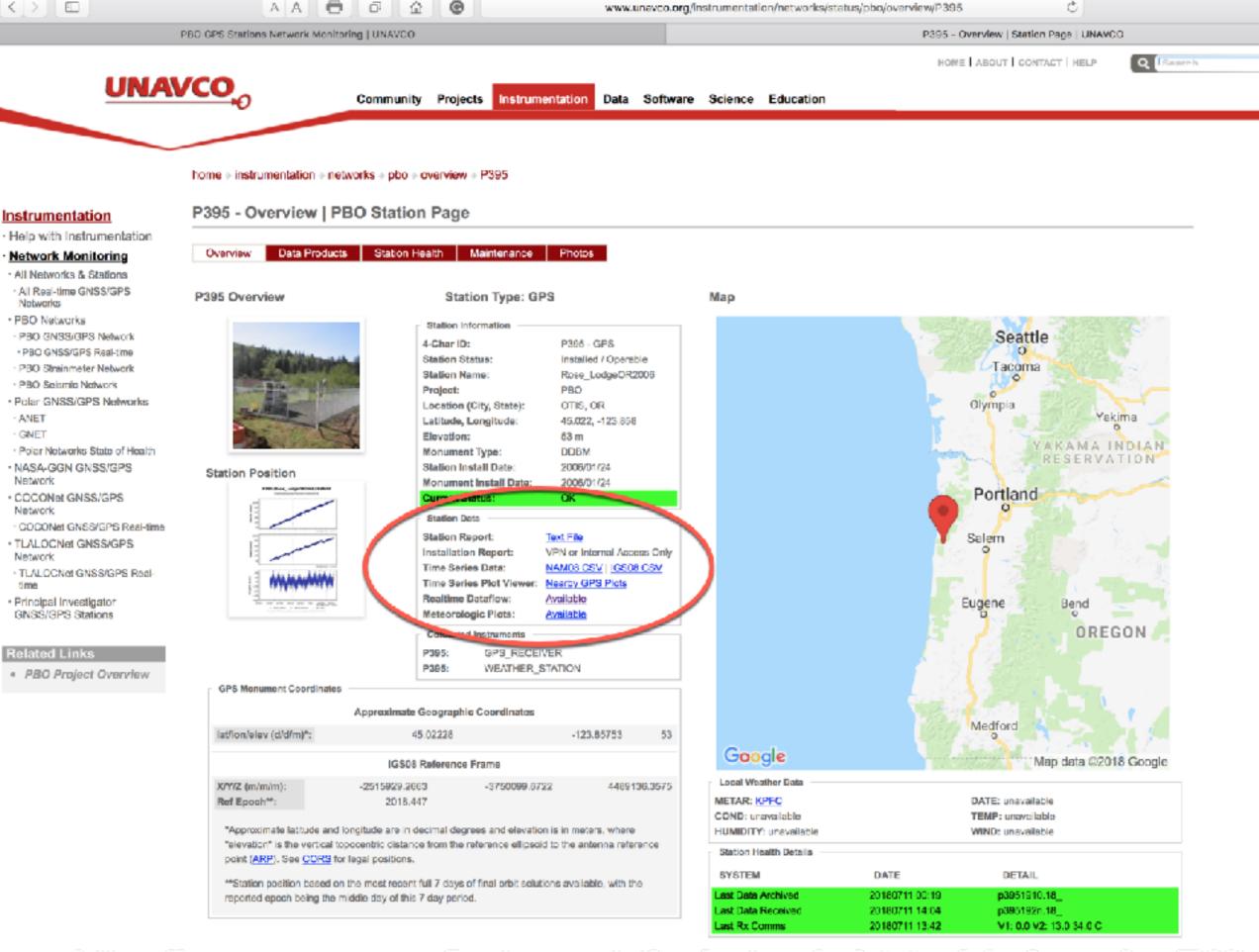

Please note: This area is not for data access, please see the <u>Data</u> section of our website to access data acquired from these instruments


See also:

Show only PBO Real-time GNSS/GPS Stations



https://www.unavco.org/instrumentation/networks/status/pbo/gps



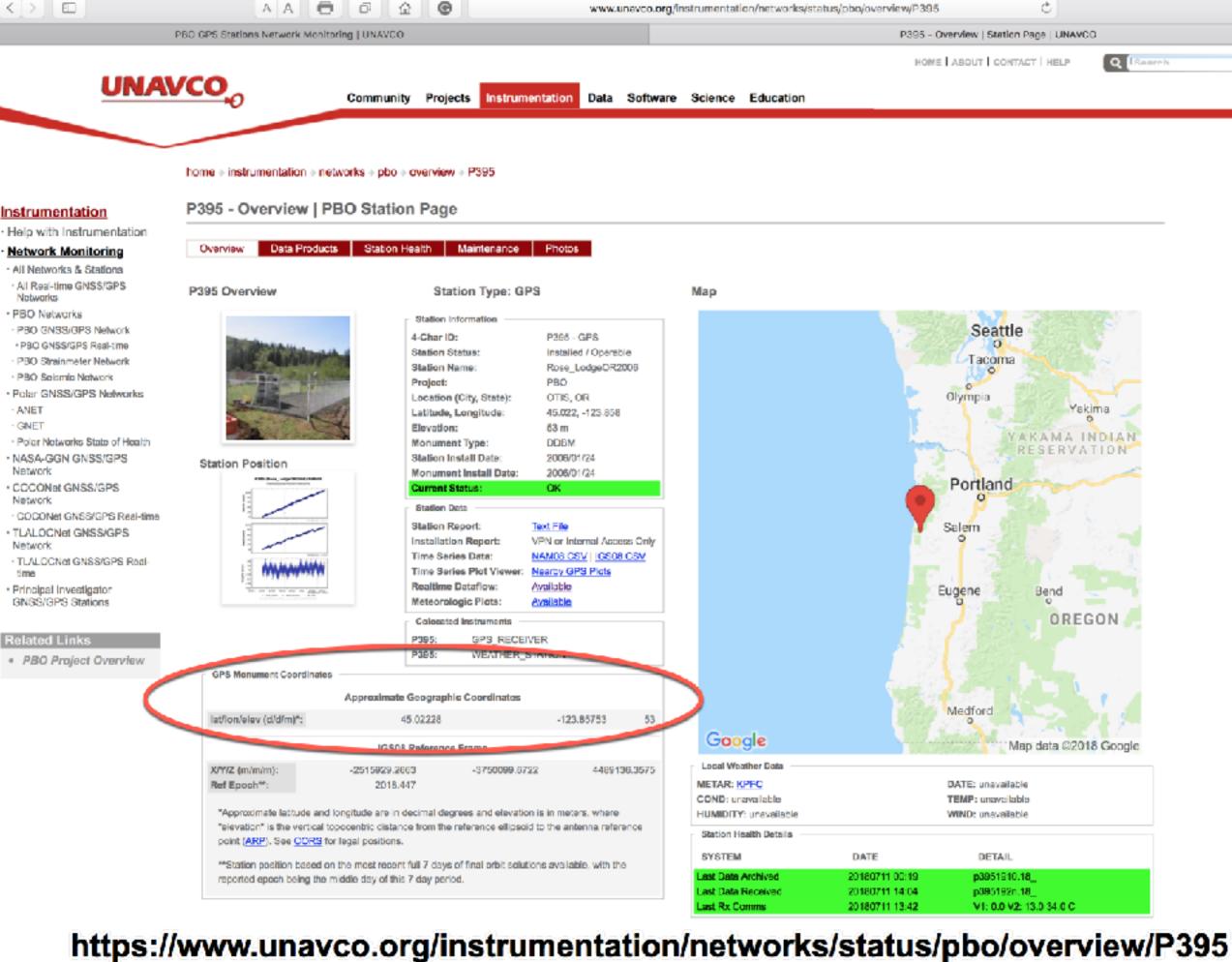
www.unavcc.org/instrumentation/networks/status/pbo/overview/P395

Current Status: OK

Station Data

Station Report: <u>Text File</u>

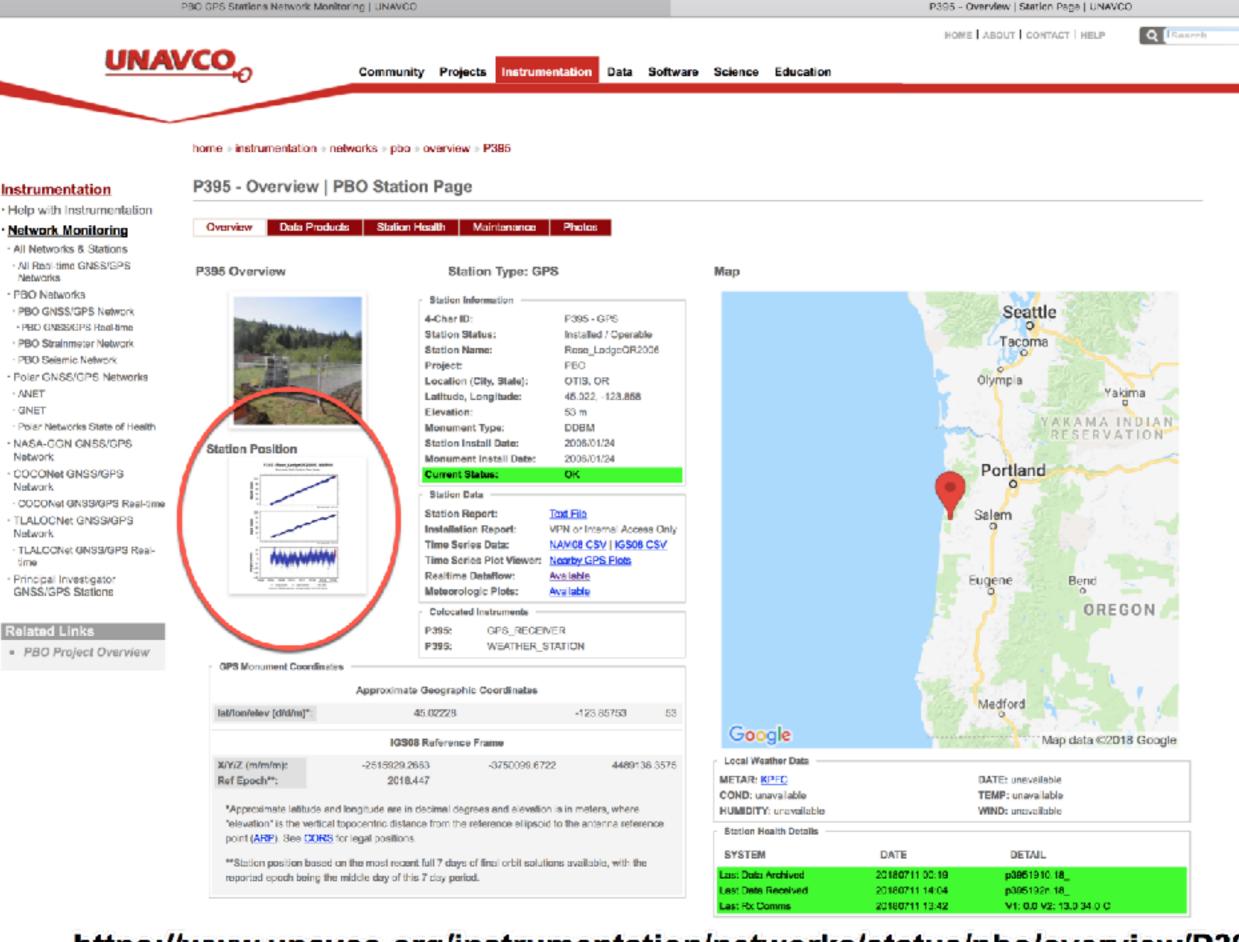
Installation Report: VPN or Internal Access Only


Time Series Data: NAM08 CSV | IGS08 CSV

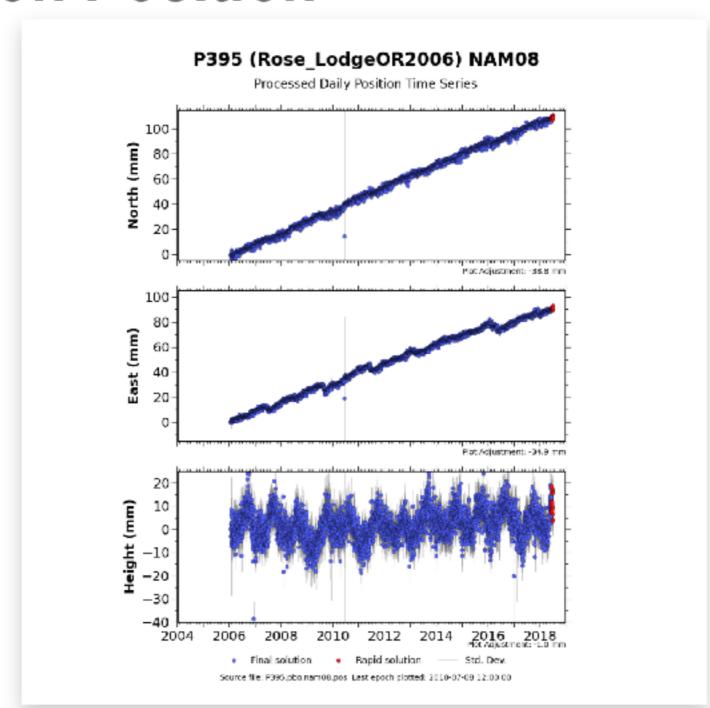
Time Series Plot Viewer: Nearby GPS Plots

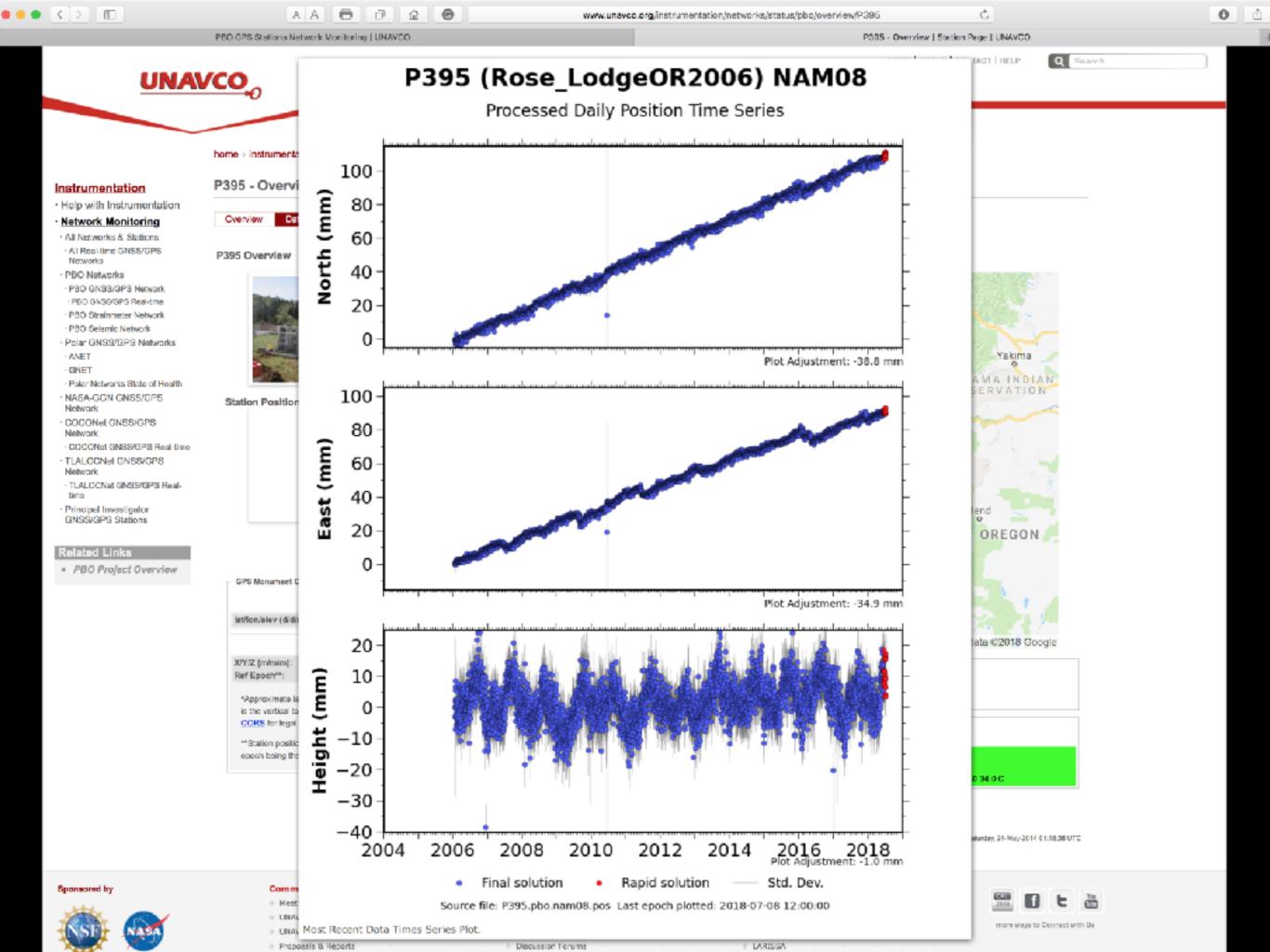
Realtime Dataflow: <u>Available</u>

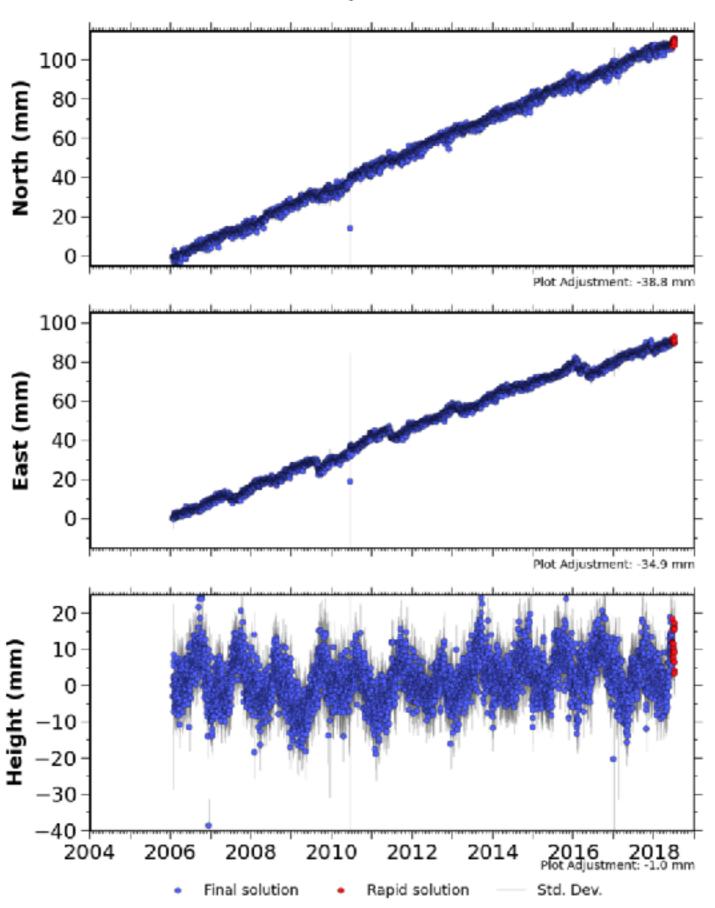
Meteorologic Plots: <u>Available</u>


Colocated Instruments

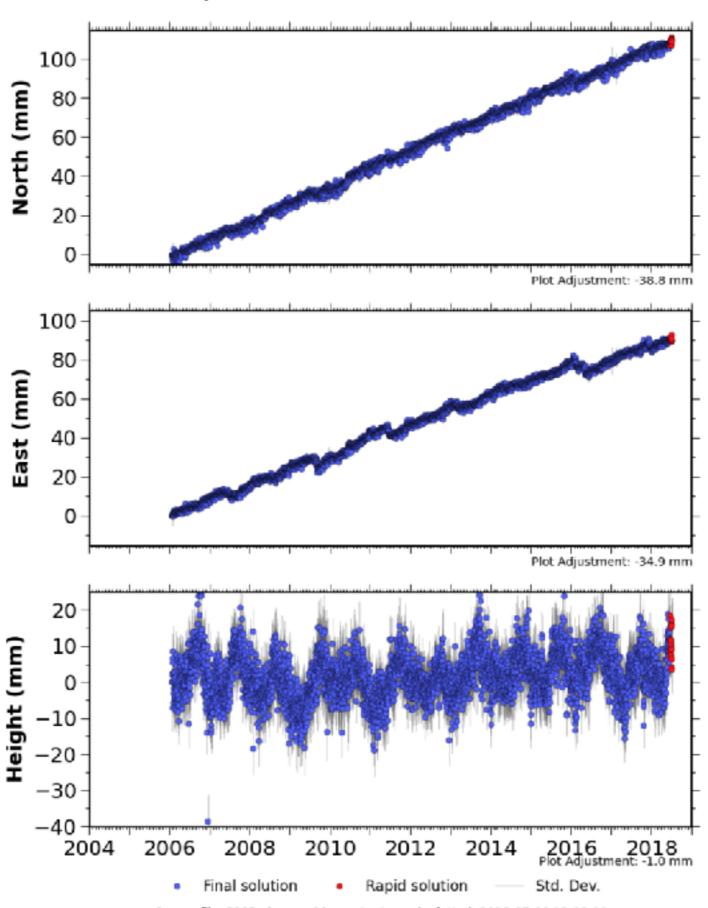
Approximate Geographic Coordinates

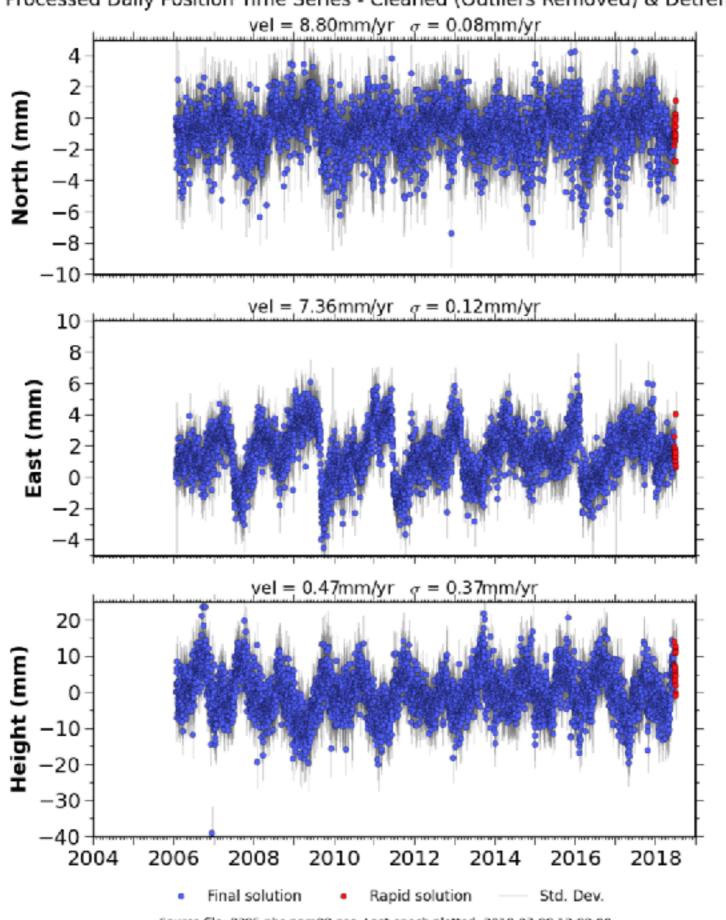

GPS Monument Coordinates


lat/lon/elev (d/d/m)*: 45.02228 -123.85753 53

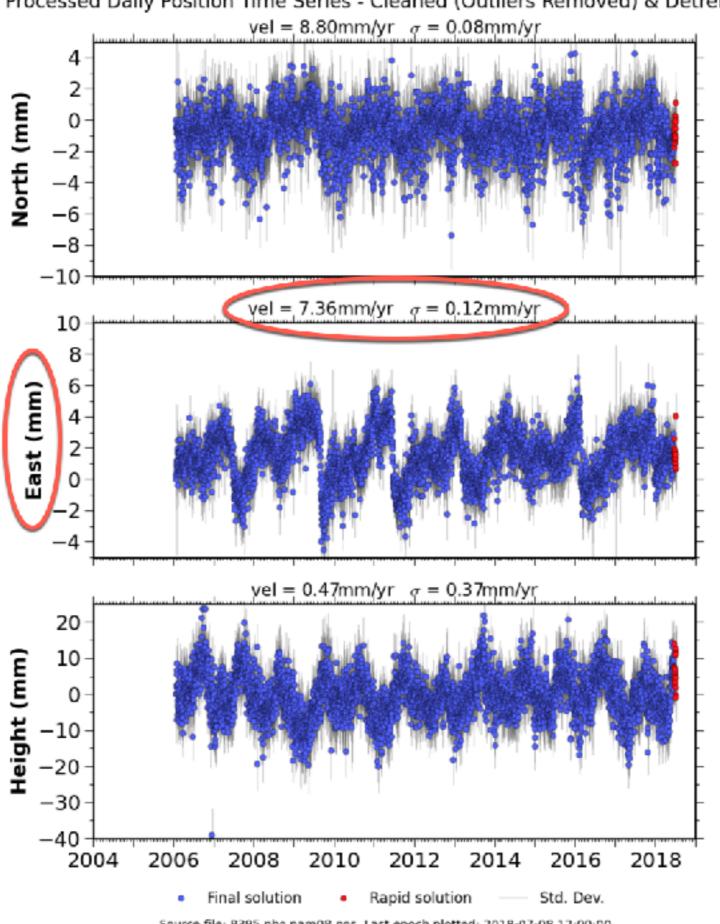

www.unavcc.org/instrumentation/networks/status/pbo/overview/P395

Station Position

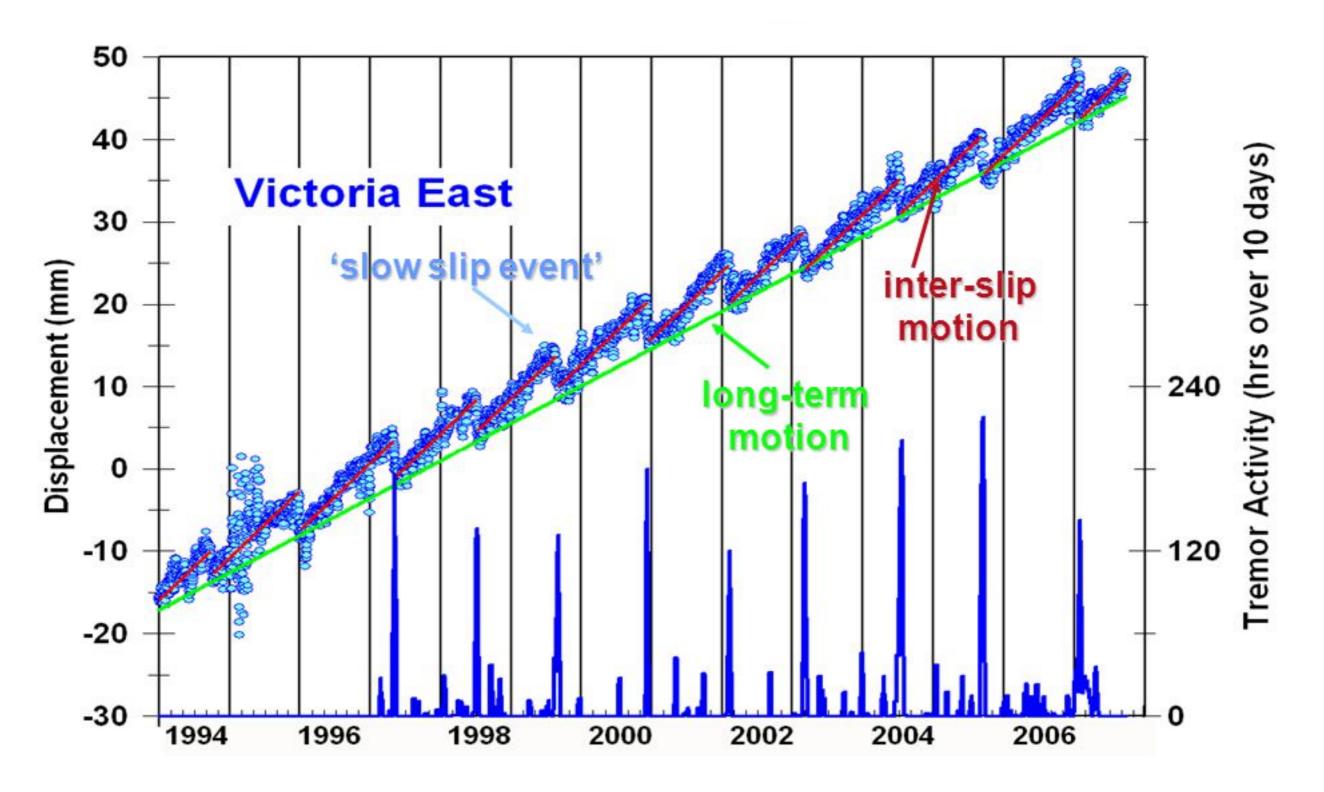



Processed Daily Position Time Series

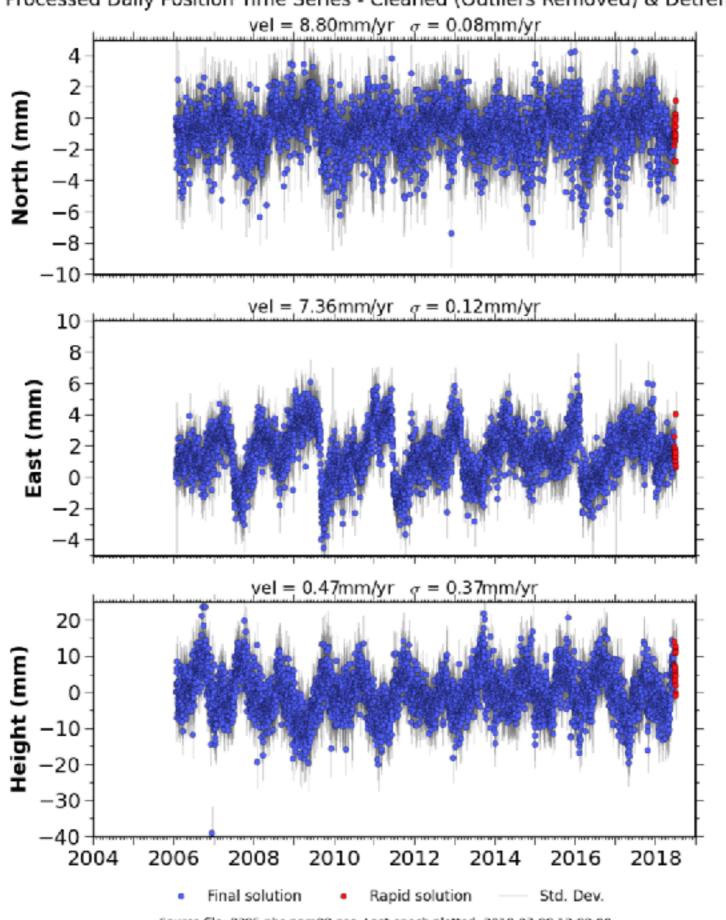
Processed Daily Position Time Series - Cleaned (Outliers Removed)



Processed Daily Position Time Series - Cleaned (Outliers Removed) & Detrended



Processed Daily Position Time Series Cleaned (Outliers Removed) & Detrended vel = 8.80mm/yr σ = 0.08mm/yr 2 North (mm) 0 --2 -6 -8 yel = 7.36 mm/yr q = 0.12 mm/yr10 8 6 East (mm) 0 -4yel = 0.47mm/yr q = 0.37mm/yr 20 10 Height (mm) 0 -10-20 -30-402006 2014 2004 2008 2010 2012 2016 2018 Final solution Rapid solution Std. Dev.


Processed Daily Position Time Series - Cleaned (Outliers Removed) & Detrended

Episodic Tremor and Slip

Processed Daily Position Time Series - Cleaned (Outliers Removed) & Detrended

Datasheet for finding GPS location and velocity data from the <u>EarthScope</u> Plate Boundary Observatory website for sites P395, P396 and P404 (https://www.unavco.org/instrumentation/networks/status/pbo/overview/P395 and so on)

Name:					
Date on whi	ch the data were acquired from	the PBO website:			
Geographic	coordinates using WGS 1984 da	ntum, North American	2008 Refere	nce Frame (NAM08)	
Site	Decimal Lat	Decimal Long			ļ
P395				_	
P396				_	
P404				_	
GPS site ve	locities relative to NAM08, expr	essed in mm/year			
Site	N Velocity ± Uncert	E Velocity ± Uncert]	Height Velocity ± Uncert	
P395			_		
P396			_		
P404			_		
•	e horizontal velocities on the ma		•		
Use your gr	oup's map of the velocity field to	o hypothesize (infer)	the instantane	ous deformation for this set of stations.	
	Approximate Magni	tude (mm/ <u>yr</u>)	Approxima	ate Azimuth (ex. " <u>north</u> " or "southwest	")
Translation:					
Rotation direction (+ = counter clockwise, - = clockwise):					
Strain:					
	Sign (+ = extension,	-= contraction)	Approxima	ate Azimuth	
Max horizon	ntal extension				
Min horizon	ntal extension				

Site Locations

P395

Approximate Geographic Coordinates

lat/lon/elev (d/d/m)*:

45.02228

-123.85753

53

P396

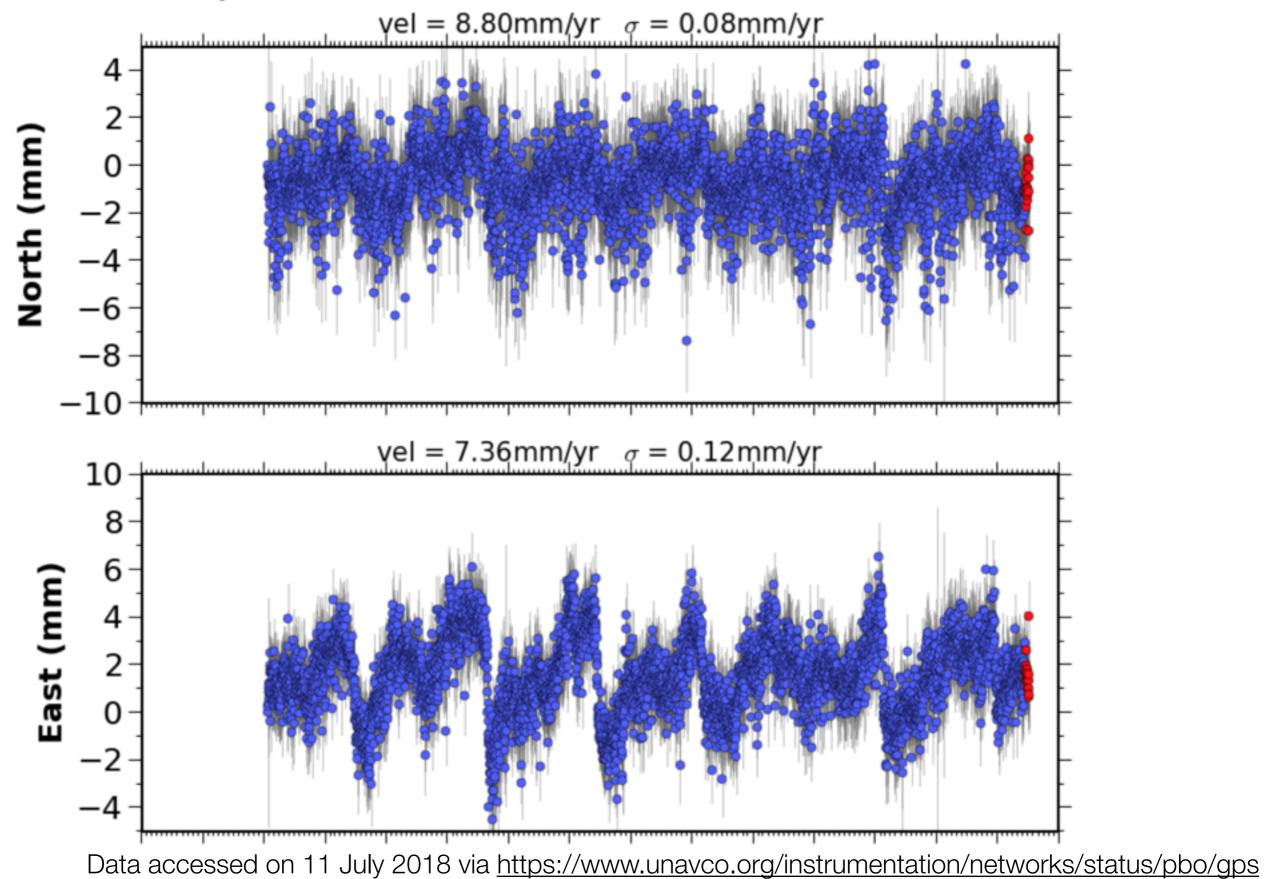
Approximate Geographic Coordinates

| lat/lon/elev (d/d/m)*: 45.30951 -123.82289 55

P404

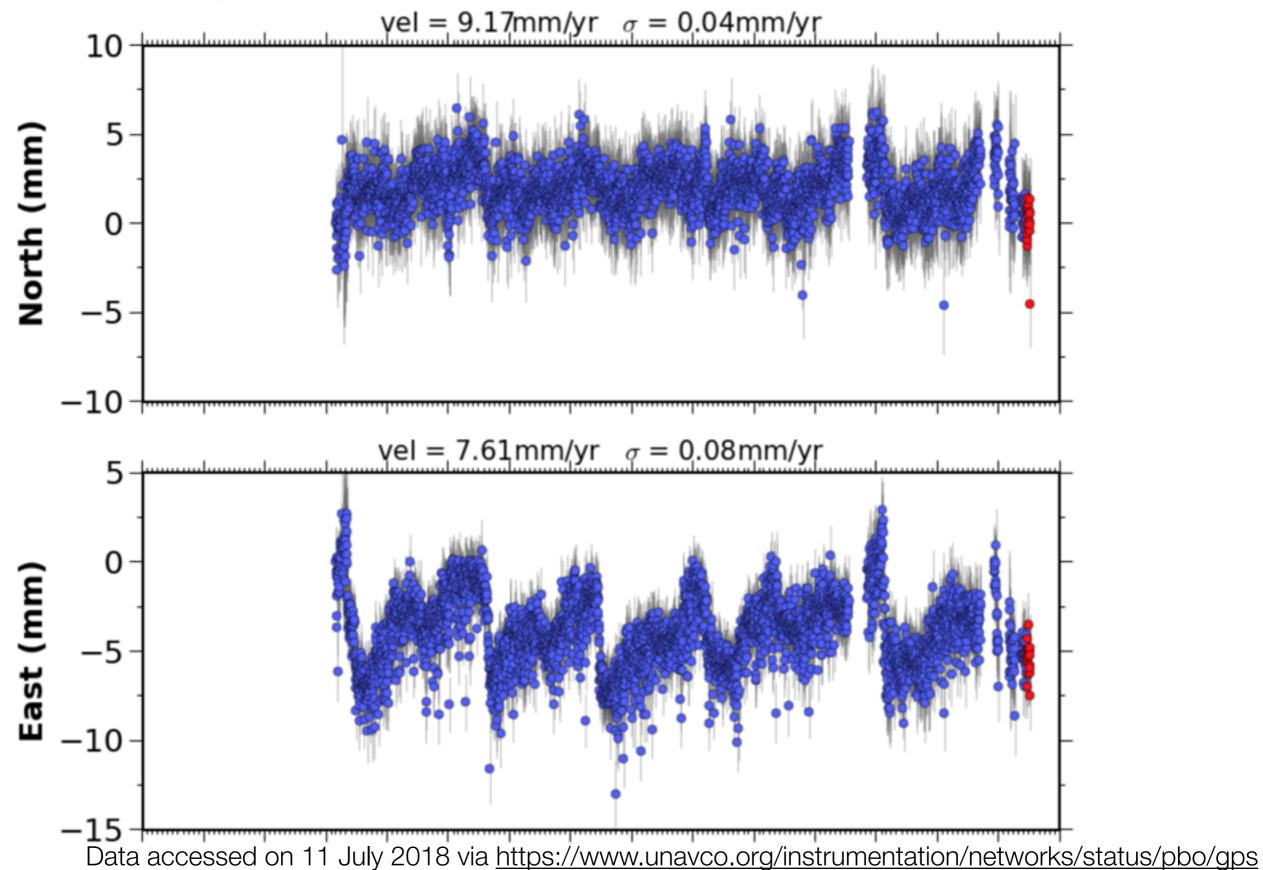
Approximate Geographic Coordinates

Iat/Ion/elev (d/d/m)*:

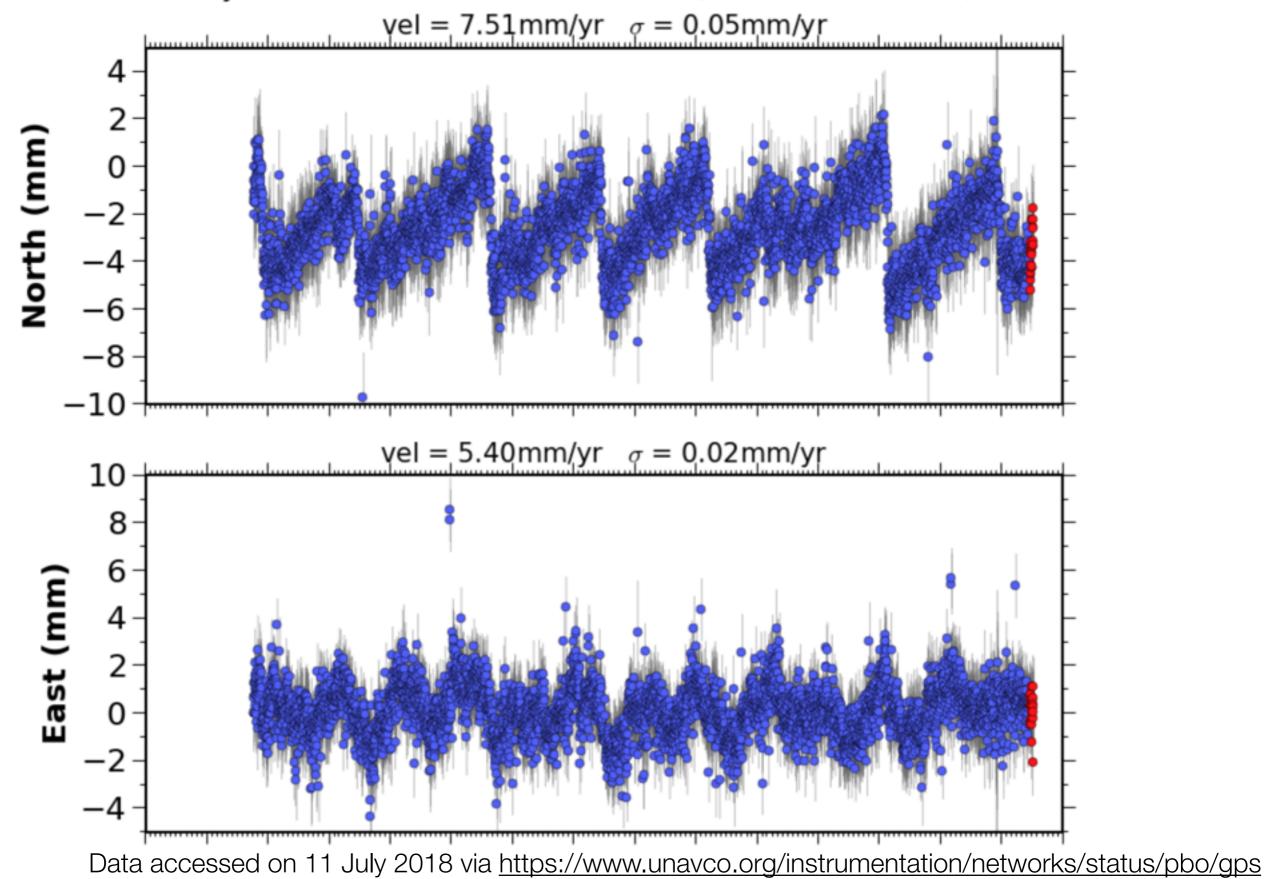

45.15853

-123.39033

79


Data accessed on 11 July 2018 via https://www.unavco.org/instrumentation/networks/status/pbo/gps

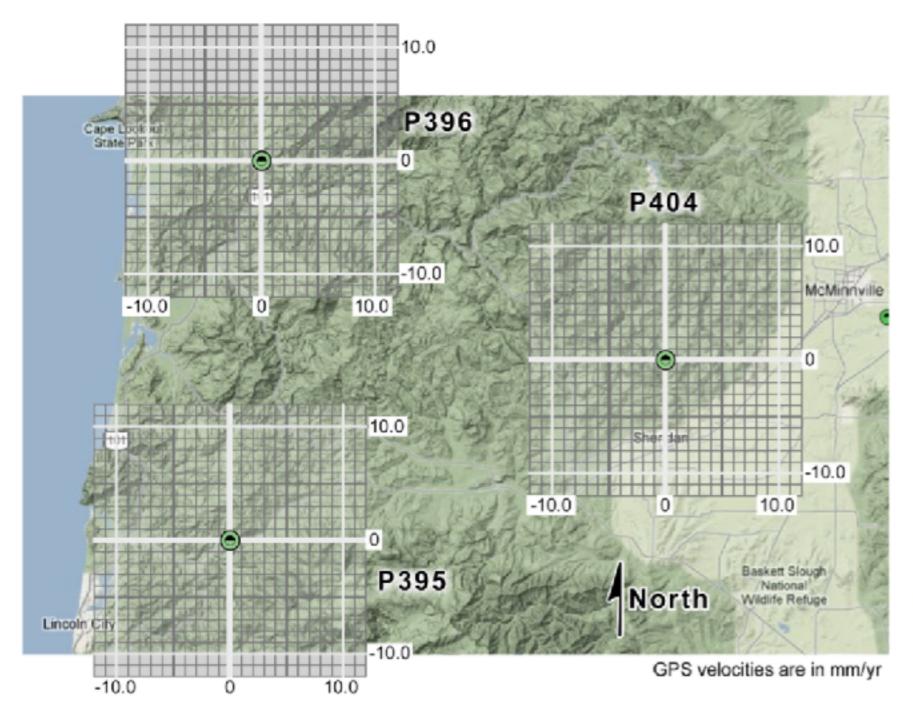
Processed Daily Position Time Series - Cleaned (Outliers Removed) & Detrended


P396 (RoosBC026GOR2007) NAM08

Processed Daily Position Time Series - Cleaned (Outliers Removed) & Detrended

P404 (PovHollow_OR2005) NAM08

Processed Daily Position Time Series - Cleaned (Outliers Removed) & Detrended


Min horizontal extension

Datasheet for finding GPS location and velocity data from the <u>EarthScope</u> Plate Boundary Observatory website for sites P395, P396 and P404 (https://www.unavco.org/instrumentation/networks/status/pbo/overview/P395 and so on)

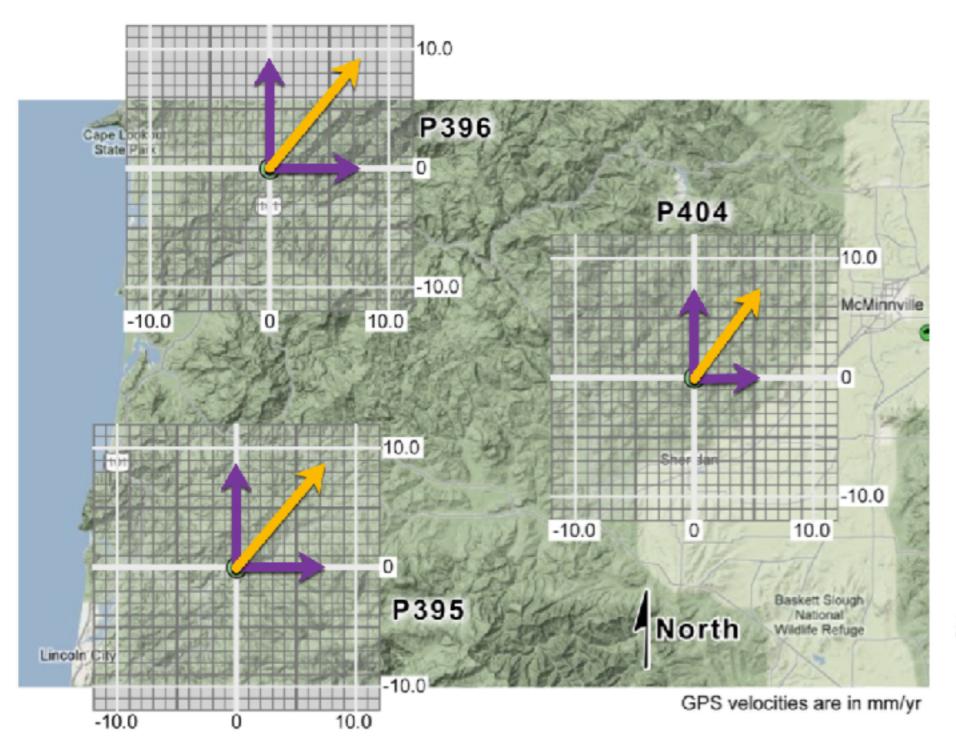
Name:										
Date on whi	ich the data we	re acquired fro	m the PBO we	ebsite: Jul	y 11, 2	2018	_			
Geographic	coordinates us	ing WGS 1984	datum, North	American 20	008 Refer	rence Frame (N	NAM08)			
Site	Dec	cimal <u>Lat</u>		Decimal Long						
P395	45.	02228		-123.85753						
P396	45.	45.30951		-123,82289						
P404	45.	15853		-123,39033						
GPS site ve	locities relative	to NAM08, e	xpressed in mr	n/year						
Site	N Velocity	± Uncert	E Velocity	E Velocity ± Uncert		Height Velocity ± Uncert				
P395	8.80	0.08	7.36	0.12						
P396	9.17	0.04	7.61	0.08		((:			
P404	7.51	0.05	5.40	0.02						
Now plot th	e horizontal ve	locities on the	map on the fo	llowing page	and then	answer the fo	llowing questions.			
•			•				tion for this set of stat	tions.		
	App	roximate Ma	gnitude (mm/	yr) A	Approxin	nate Azimuth	(ex. "north" or "sou	ıthwest")		
Translation:				_						
Rotation dir	rection (+ = cou	inter clockwise	e, -= clockwis	e): _						
Strain:										
	Sign	(+ = extensio	n, - = contrac	tion) A	Approxin	nate Azimuth				
Max horizon	ntal extension			_						

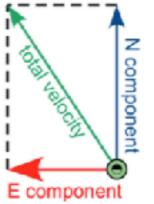
Carefully draw the E-W and N-S velocity vectors associated with the three PBO GPS sites shown as green dots in the map below. A negative east component is a vector pointing west, and a negative north component is a vector pointing south. The graphs are scaled in units of millimeters per year. Then draw the total horizontal velocity vector for each site, and determine the horizontal speed (that is, the length of the total horizontal velocity vector) of each site. You can determine the total horizontal speed by one of the methods shown at right below.

To find the total speed graphically, use a ruler and the scale shown on the graph to measure the length of the total velocity vector.

To find the total speed using vector math, add the E and N component vectors together, and find the length of the resulting total velocity vector using the Pythagorean theorem. $\{-5.0, 0\}$

total speed = $\sqrt{(-5.0^2)+(7.5^2)}$


To find the total speed by solving a right-triangle problem, use the Pythagorean theorem to find the length of the hypotenuse 7.5 of a triangle whose sides are the lengths of the E and N components.


5.0 total speed = $\sqrt{(5.0^2)+(7.5^2)}$

mm/yr; P404 Total horizontal speeds: P395 mm/yr; P396 mm/yr

Carefully draw the E-W and N-S velocity vectors associated with the three PBO GPS sites shown as green dots in the map below. A negative east component is a vector pointing west, and a negative north component is a vector pointing south. The graphs are scaled in units of millimeters per year. Then draw the total horizontal velocity vector for each site, and determine the horizontal speed (that is, the length of the total horizontal velocity vector) of each site. You can determine the total horizontal speed by one of the methods shown at right below.

To find the total speed graphically, use a ruler and the scale shown on the graph to measure the length of the total velocity vector.

To find the total speed using vector math, add the E and N component vectors together, and find the length of the resulting total velocity vector using the Pythagorean theorem.

{-5.0, 0}

total speed = $\sqrt{(-5.0^2)+(7.5^2)}$

To find the total speed by solving a right-triangle problem, use the Pythagorean theorem to find the length of the hypotenuse of a triangle whose sides are the lengths of the E and N components.

5.0 total speed = $\sqrt{(5.0^2)+(7.5^2)}$

~9.2 _{mm/yr}

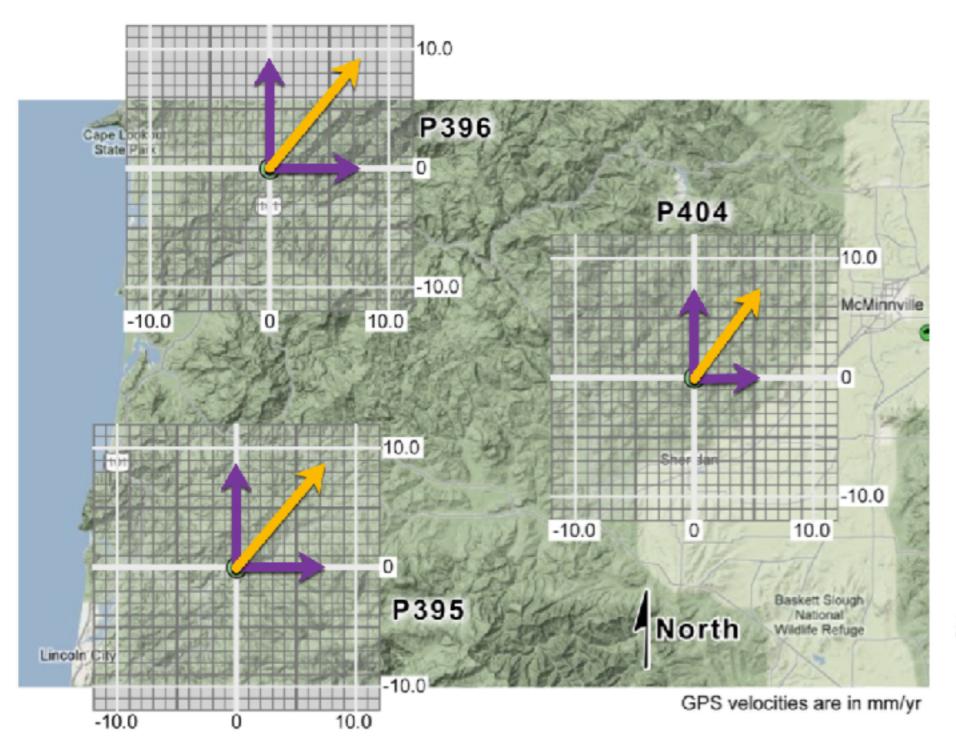
Total horizontal speeds: P395 ~11.5

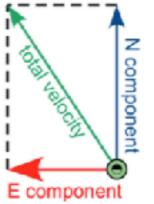
mm/yr; P396

~11.9

_mm/yr; P404

Min horizontal extension




Datasheet for finding GPS location and velocity data from the <u>EarthScope</u> Plate Boundary Observatory website for sites P395, P396 and P404 (https://www.unavco.org/instrumentation/networks/status/pbo/overview/P395 and so on)

Name:										
Date on whi	ich the data we	re acquired fro	m the PBO we	ebsite: Jul	y 11, 2	2018	_			
Geographic	coordinates us	ing WGS 1984	datum, North	American 20	008 Refer	rence Frame (N	NAM08)			
Site	Dec	cimal <u>Lat</u>		Decimal Long						
P395	45.	02228		-123.85753						
P396	45.	45.30951		-123,82289						
P404	45.	15853		-123,39033						
GPS site ve	locities relative	to NAM08, e	xpressed in mr	n/year						
Site	N Velocity	± Uncert	E Velocity	E Velocity ± Uncert		Height Velocity ± Uncert				
P395	8.80	0.08	7.36	0.12						
P396	9.17	0.04	7.61	0.08		((:			
P404	7.51	0.05	5.40	0.02						
Now plot th	e horizontal ve	locities on the	map on the fo	llowing page	and then	answer the fo	llowing questions.			
•			•				tion for this set of stat	tions.		
	App	roximate Ma	gnitude (mm/	yr) A	Approxin	nate Azimuth	(ex. "north" or "sou	ıthwest")		
Translation:				_						
Rotation dir	rection (+ = cou	inter clockwise	e, -= clockwis	e): _						
Strain:										
	Sign	(+ = extensio	n, - = contrac	tion) A	Approxin	nate Azimuth				
Max horizon	ntal extension			_						

Carefully draw the E-W and N-S velocity vectors associated with the three PBO GPS sites shown as green dots in the map below. A negative east component is a vector pointing west, and a negative north component is a vector pointing south. The graphs are scaled in units of millimeters per year. Then draw the total horizontal velocity vector for each site, and determine the horizontal speed (that is, the length of the total horizontal velocity vector) of each site. You can determine the total horizontal speed by one of the methods shown at right below.

To find the total speed graphically, use a ruler and the scale shown on the graph to measure the length of the total velocity vector.

To find the total speed using vector math, add the E and N component vectors together, and find the length of the resulting total velocity vector using the Pythagorean theorem.

{-5.0, 0}

total speed = $\sqrt{(-5.0^2)+(7.5^2)}$

To find the total speed by solving a right-triangle problem, use the Pythagorean theorem to find the length of the hypotenuse of a triangle whose sides are the lengths of the E and N components.

5.0 total speed = $\sqrt{(5.0^2)+(7.5^2)}$

~9.2 _{mm/yr}

Total horizontal speeds: P395 ~11.5

mm/yr; P396

~11.9

_mm/yr; P404

Graphic solutions are OK for initial visualization, but we need an analytical or numerical solution to improve the reliability of our result.

The GPS module includes "calculators" written in three forms (Excel, MatLab, and Mathematica) as well as documents that would allow students to write their own code:

Primer on Infinitesimal Strain Analysis in 1, 2 and 3-D and

Algorithm for Triangle Strain

Fire-up the Excel version of the strain calculator

	۸	P	_	D	F	E	-	и		
4	A Infinitosi	B mal strain from GDS valacity data fr	om sitos in a t	D riangular array		Г	G	H		J
1	intinitesi	mal strain from GPS velocity data fr			1			October 18, 2012		
2		Send corrections, suggestions, comments to Vir	nce_Cronin@baylor	.edu						
3	I	_								
4	Instruction									
5		(1) Input the name. location, and velocity data f		-						
6		(2) When the required data have been input, th	e answers will appe	ear in the Output Da	ita section (blue	e cells).				
7	1-141-1 1	4 B-4-								
8	Initial Inpu									
9		Site	Longitude	Latitude	E velocity	E vel uncert	N velocity	N vel uncert		
10		Name	west is negative	south is negative	(mm/yr)	(mm/yr)	(mm/yr)	(mm/yr)		
11		AC63	-145.847244751	63.502426437	1.79	0.01	-2.76	0.01		
12		AC62	-146.312697002	63.083606996	-19.51	0.01	5.43	0.01		
13		AB37	-145.451879261	62.967323566	-21.6	0.01	10.3	0.01		
14										
15 16	Primary O	utput Data				Str	ain ellipse (exa	ggerated by 1e6)		
17		Translation Vector E component ± uncert (m/yr)	-0.0131	±	5.7735E-06	-	2			
18	-	N component ± uncert (m/yr)	0.0043	±	5.7735E-06	 				_
19		Azimuth (degrees)	288.3	1	3.77332-00	 				
20		Speed (m/yr)	0.0138							
21		Rotation ± uncertainty (degrees/yr)	-0.00001044	±	0.00000001	1	1			
22		Rotation ± uncertainty (nano-rad/yr)	-182.2906	±	0.2002	1				
23		Direction of rotation	clockwise			1		\)		
24		Max horizontal extension (e1H) (nano-strain)	207.4117			1		V		initial
25		Azimuth of S1H (degrees)	59.8113	or	239.8113245		0			
26		Min horizontal extension (e2H) (nano-strain)	-339.1133] 7	Λ		Í	final
27		Azimuth of S2H (degrees)	149.8113	or	329.8113245					
28		Max shear strain (nano-strain)	546.5250			1				
29		Area strain (nano-strain)	-131.7015			I	-1			
30										
31	Other Outpu									
32		Lagrangian strain-rate tensor	60.0460		0.0000					
33		Exx ± uncert (nano-strain)	69.2189	<u> </u>	0.3280		-2			
34		εxy ± uncert (nano-strain)	237.5470	<u> </u>	0.2002					
35		εyy ± uncert (nano-strain)	-200.9205	±	0.2298					
		First invariant of strain-rate tensor	-131.7015							

	Α	В	С	D	E	F	G	Н		J	
1	Infinitesi	mal strain from GPS velocity data fr			October 18, 2012						
2		Send corrections, suggestions, comments to Vir									
3			_								
4	Instruction	is									
5		(1) Input the name. location, and velocity data f	rom three GPS sites	s in the yellow cells.							
6		(2) When the required data have been input, th	e answers will appe	ear in the Output Da	ta section (blue	cells).					
7											
8	Initial Inpu	t Data									
9		Site	Longitude	Latitude	E velocity	E vel uncert	N velocity	N vel uncert			
10		Name	west is negative	south is negative	(mm/yr)	(mm/yr)	(mm/yr)	(mm/yr)			
11		P395	-123.857530000	45.022280000	7.36	0.02	8.8	0.08			
12		P396	-123.822890000	45.309510000	7.61	0.08	9.17	0.04			
13		P404	-123.390330000	45.158530000	5.4	0.02	7.51	0.05			
14											
15	Primary O	•				Strain ellipse (exaggerated by 1e6)					
16		Translation Vector					2				
17		E component ± uncert (m/yr)	0.0068	±	2.82843E-05						
18		N component ± uncert (m/yr)	0.0085	±	3.41565E-05	 					
19 20		Azimuth (degrees)	38.6 0.0109			 					
21		Speed (m/yr) Rotation ± uncertainty (degrees/yr)	-0.00000157	±	0.00000009	 	1			H-	
22		Rotation ± uncertainty (nano-rad/yr)	-27.3470	±	1.6500	 					
23		Direction of rotation	clockwise		1,0500	 					
24		Max horizontal extension (e1H) (nano-strain)	18.0762			t		N	١.	initial	
25		Azimuth of S1H (degrees)	169.7234	or	349.723356		•				
26		Min horizontal extension (e2H) (nano-strain)	-61.0800]	-1)	f '	final	
27		Azimuth of S2H (degrees)	79.7234	or	259.723356						
28		Max shear strain (nano-strain)	79.1562								
29		Area strain (nano-strain)	-43.0038			<u> </u>	-1				
30											
31 32	Other Outpu										
33		Lagrangian strain-rate tensor exx ± uncert (nano-strain)	-58.5607	±	1.2303						
34		εxx ± uncert (nano-strain)	-13.8950	±	1.6500		-2				
35		εχy ± uncert (nano-strain)	15.5569	±	2.7299						
33			13.3303	_	2.1233						
76		First invariant of strain-rate tensor	-43.0038								

						4				
15		utput Data			/	S	train ellipse (exa	aggerated by 1e6)	<u></u>	
16	1	Translation Vector				il	2	- BBC 14100 Dy 2007	<u>, </u>	1
17	4	E component ± uncert (m/yr)	0.0068	±	2.82843E-05	il l	-		J	1
18		N component ± uncert (m/yr)	0.0085	±	3.41565E-05	il I			J	1
19		Azimuth (degrees)			/	il I			J	1
20		Speed (m/yr)			/		_		J	1
21		Rotation ± uncertainty (degrees/yr)	-0.00000157	±	0.00000009				J	1
22		Rotation ± uncertainty (nano-rad/yr)	-27.3470	±	1.6500				J	1
23	1	Direction of rotation	clockwise		/	il I			J	1
24		Max horizontal extension (e1H) (nano-strain)	18.0762						J	initia
25		Azimuth of S1H (degrees)	169.7234	or	349.723356		0			1
26		Min horizontal extension (e2H) (nano-strain)	-61.0800		/	1 7	-	1	1	final final
27		Azimuth of S2H (degrees)	79.7234	or	259.723356	4			J	1
28		Max shear strain (nano-strain)	79.1562		/	4			J	1
29	4	Area strain (nano-strain)	-43.0038		<u> </u>		-1		J	1
30	4			/	7	1			J	1
	Other Outpu	at			<u> </u>	4			J	1
32		Lagrangian strain-rate tensor			/	A			J	1
33		εxx ± uncert (nano-strain)	-58.5607	±	1.2303	1	-2			
34		εxy ± uncert (nano-strain)	-13.8950	±	1.6500					
35		εyy ± uncert (nano-strain)	15.5569	±	2.7299					
36		First invariant of strain-rate tensor (nano-strain)	-43.0038							
37		Second invariant of strain-rate tensor (nano-strain)	-1.1041E-06							
38		Third invariant of strain-rate tensor (nano-strain)	-1.1041E-06							
39	4									
40	Computation	ion	1							
41	4	Site name	P395	P396	P404					
42	4	latitude in radians	0.785787023	0.790800132	0.788165034					
43	4	longitude in radians	-2.161721702	-2.16111712	-2.153567524					
	4									

GPS Strain & Earthquakes: Explanation of Strain Calculator Output

Original document by Vince Cronin (Baylor University). Revisions by Beth Pratt-Sitaula (UNAVCO).

The "GPS Triangle Strain Calculator" (Excel and Matlab versions) takes the velocity at each of the three GPS stations, and determines what types of transformations the region between them is undergoing. It breaks the total measured GPS velocities into components of the different types of transformations—translation, rotation, extension, and strain.

- The Translation Vector can be visualized as the vector from one specific point to another -- from the original position of the center of the triangle formed by the three GPS sites to the displaced position of the center of the triangle.
 - The *East component* of the translation vector is computed by taking the average of the three E (east-west) velocity vectors, expressed in meters per year (1 m/yr = 1000 mm/yr; 1 mm/yr = 0.001 m/yr). A negative value signifies westward movement.
 - O In a similar way, the N component of the translation vector is the average of the N (northsouth) velocity vectors, also expressed in meters per year; negative value is southward movement.
 - o The *Azimuth* of the translation is the average direction that the GPS sites are moving.

Cascadia