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We will use some of the user-defined functions developed in previous chapters.

convert2Cartlat_, long_ := Coslat Degree Coslong Degree,

Coslat Degree Sinlong Degree, Sinlat Degree;

unitVect3D[vect_] :=
{(vect[[1]] / Norm[vect]), (vect[[2]] / Norm[vect]), (vect[[3]] / Norm[vect])};

zRotationw_, dT_ := Cosw dT Degree, -Sinw dT Degree, 0,

Sinw dT Degree, Cosw dT Degree, 0, {0, 0, 1};

circMotionx_, m1_, w_, dT_ := Module{m2, m3, answer}, m2 = zRotationw, dT;

m3 = Inverse[m1];
answer = m3.m2.m1.x;

answer;

�������������������������������������

Velocities are always measured relative to a specified frame of reference.  In this section, we are going to consider the velocity of a point P
on one plate as observed from another plate.  

Velocities  are  expressed  in  units  of  length  per  time;   angular  velocities  are  in  units  of  angle  per  time.   Strictly  speaking,  an  instantaneous
velocity is expressed in the limit as time shrinks to nearly zero.  The instantaneous velocity vector associated with a given point P is tangent
to the surface of the sphere at that point.  Of course, there are an infinite number of vectors that are tangent to a sphere at a given point, so
how do we determine the direction of the correct vector?

Let’s use the name ���� for the unit location vector to the pole around which the plate containing point P moves in a positive direction
(counter-clockwise)  as  observed  from  the  other  plate.   The  current  best  source  for  pole  locations  and  angular  velocities  for  one  plate  as
observed from another is the MORVEL-56 model of Chuck Demets and others (2010;  http://geoscience.wisc.edu/~chuck/MORVEL/).
The location vector to point P will be called ���.  

How  can  we  find  the  direction  of  instantaneous  motion  at  point  P  ?   Here  are  three  ways  to  visualize  the  instantaneous  velocity  vector.
First, imagine a path that leads from point P directly to the pole, along a great-circle arc.  As you stand at P and look toward the pole, the
instantaneous velocity vector extends to the right, perpendicular to that great-circle arc toward the pole.  Second, if you know the azimuth
from a given point to the pole around which that point rotates in a positive direction, the direction of motion will be 90° greater than the
azimuth to the pole.  Third, we can recognize that vectors ���� and ��� are part of a unique plane through the center of the sphere, and
the  instantaneous  velocity  vector  at  point  P  is  parallel  to  the  vector  result  of  ����  ⨯  ���,  which  is  a  vector  normal  to  the  ����  -  ���
plane. 

What  is  the  magnitude  of  the  instantaneous  tangential  velocity  vector  at  a  given  point?   How  fast  is  a  given  point  going?   All  points  on  a
rigid plate have the same angular velocity.  The magnitude of the tangential velocity of a given point (measured in units of length per time,
such as km/Myr) is a function of the distance from the point to the pole.  The maximum magnitude occurs at an angular distance of 90° to
the pole, and the magnitude is zero at the pole.  When our model Earth rotates by 1° on its axis, a point on the equator, 90° angular distance
from the north pole, moves by (1/360) times the circumference in kilometers, or 
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maxDistPerDegree =
6371.01 * 2 * π

360

kilometers.  The estimated mean radius of Earth (6371.01) limits the number of significant figures to two to the right of the decimal.  We
can use a user-defined function ��������������  to perform that feat for us

round2DecRight[x_] := NRound[x * 100]  100;

round2DecRight[111.195]

The user-defined function �������������� employs the built-in function �����, which follows the convention that a number of the
form  x.5  is  rounded  to  x+1  when  x  is  an  odd  number,  and  to  x  otherwise.   Consequently,  111.195  rounds  to  111.20,  and  Mathematica
(unhelpfully)  drops  the  trailing  zero.   That  said,  it  is  generally  considered  to  be  best  practice  to  avoid  rounding  values  in  the  middle  of  a
string of computations, but rather to consider the appropriate number of significant figures at the end.

If  we  define  θ  as  the  angular  distance  to  the  rotational  pole  from  our  reference  point,  we  can  generalize  the  equation  above  so  that  it
computes the distance traveled by any point on the model Earth surface during a rotation of 1°.

distPerDegree =
6371.01 * 2 * π

360
Sin[θ];

The  sine  function  produces  a  maximum  value  of  1  when  θ  =  90°  and  a  value  of  0  when  θ  =  0°,  which  is  consistent  with  the  manner  in
which  the  magnitude  of  the  tangential  velocity  (the  tangential  speed)  varies  with  angular  distance  from  the  pole.   Now,  let’s  add  the  final
component,  a  variable  angular  rotation  around  the  pole.   We  will  wrap-up  the  whole  package  into  a  user-defined  function  to  find  the
magnitude  of  the  tangential  velocity  vector  (���������)  and  test  it  out  with  a  rotation  of  1°  and  θ  =  90°  to  see  if  we  get  the  correct
answer that we computed above.

tangSpeedrotAngle_, angDist_ := rotAngle * 6371.01 * 2 * π * SinangDist Degree  360;

tangSpeed[1, 90]

kilometers.  Good.  Our user-defined function gave us the expected angle for the one case that we have already computed.  Let’s see if our
function works properly on a set of points ranging from pole (θ = 0°) to pole (θ = 180°) in steps of 30°.

TabletangSpeed1, i, i, 0, 180, 30

Peachy.   The  results  are  symmetrical  around  the  maximum  value  (111.195  km  at  θ  =  90°)  and  drop  to  zero  at  both  poles,  with  no  unex-
pected sign errors.  Bueno.  So now we have some way of knowing the direction of relative motion at an arbitrary point, and the tangential
speed of relative motion at that point.  But if we are standing at that point on a plate boundary, we might want our tangential speed to be
expressed in something more meaningful to our human scale of perception -- cm/yr rather than km/Myr, for example.  A conversion is in
order.  How many cm/yr is the equivalent of 1 km/Myr?

1 km = 1,000 m = 100,000 cm

1 Myr = 1,000,000 yr, so

1 km/Myr = 100,000 cm/1,000,000 yr = 0.1 cm/yr

For example, if we had an angular velocity of 1°/Myr and a point located 60° from the rotational pole, that point would have a tangential
velocity of 96.30 km/Myr or (0.1*96.30) = 9.63 cm/yr, ignoring the significant figures.  (If your input data is good to 10 meters, your output
data is not going to be good to 1/100 of a centimeter!  But I digress...)

Let’s do a worked example, and then practice with a homework exercise.

Worked example

One of the points along our imaginary little plate has an initial location of 26.6199°N latitude and 2.68982°E longitude.  The rotational pole
is located at 65°N latitude and 15°W longitude, and the instantaneous angular velocity is 0.938°/Myr.  

Question:  What is the azimuth (expressed in degrees) and magnitude of the tangential instantaneous velocity vector (expressed in cm/yr)
at the specified reference point, and what are the coordinates of the unit vector that is parallel to that tangential velocity?

Computation and head scratching:  Back in chapter 2, we learned how to find the angular distance from one point to another, as well as
the azimuth of one point as viewed from another.  First, let's convert the input geographic data into unit vectors.

pole = convert2Cart[65, -15]; refPt = convert2Cart[26.6199, 2.68982];

Second, we will find the angular distance between the two points, in degrees, using the built-in Mathematica functions ����������� and
������, and call that angle ϕ
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ϕ = VectorAnglepole, refPt  Degree;

Third, we will initialize the angular velocity ω and express it in degrees per million years.

ω = 0.938;

Fourth, we find the tangential speed, employing the user-defined function ���������

tangentialSpeed = tangSpeed[ω, ϕ];

in km/Myr, which corresponds to

tangSpeedCmYr = 0.1 * tangentialSpeed;

in cm/yr.  Fifth, we find the unit vector that is parallel to the direction of the tangential velocity vector.

unitVelVect = unitVect3DCrosspole, refPt;

Now that we have done all of the easy stuff, we need to find the azimuth of the tangential velocity vector.  When you are standing at the
reference  point  looking  due  north,  the  azimuth  of  the  vector  is  found  by  measuring  an  angle  on  the  imaginary  horizontal  plane  that  is
tangent  to  Earth’s  assumed-spherical  surface  at  the  very  reference  point  you  are  standing  on.   The  angle  is  measured  starting  at  north  (0°
azimuth) and continuing in a clockwise manner until you reach the direction of the velocity vector.  The azimuth will be a positive number
less than 360°.  First, let’s tell your computer where the unit location vector pointing to the north pole is.

north = {0, 0, 1};

Second,  we  find  the  normals  to  the  planes  through  the  reference  point,  the  north  pole,  and  Earth’s  center  (�������)  and  through  the
reference point, the unit velocity vector, and Earth’s center (�������).

normal1 = CrossrefPt, north; normal2 = CrossrefPt, unitVelVect;

Third, we find the angle (γ, gamma) between the two normal vectors (������� and �������)

γ = VectorAnglenormal1, normal2  Degree;

Fourth, we find a unit vector (�����������) that is on the plane that the reference point shares with the north pole, so that when you
are sitting on the reference point looking toward this new unit vector, you will be looking toward north.

towardNorth = unitVect3DCrossnormal1, refPt;

Fifth, we find the angle (ψ, psi) between the vectors ����������� and �������.

ψ = VectorAngletowardNorth, normal2  Degree;

Finally, we use ψ to help us determine whether the azimuth is γ or (360 - γ).

azimuth = If[(ψ > 90), 360 - γ, γ];

Answers:  The azimuth of the tangential instantaneous velocity vector at the reference point is

azimuth

degrees.  The magnitude of the tangential instantaneous velocity vector at the reference point, expressed in centimeters per year, is

tangSpeedCmYr

The coordinates of the unit vector parallel to the tangential instantaneous velocity vector at the reference point are

unitVelVect

�������������������������������������������

Part 1.  A user-defined function for finding the azimuth

This  business  of  finding  an  azimuth  looks  like  a  task  we  are  likely  to  need  to  perform  again,  so  let’s  make  it  into  a  user-defined  function
�������������, so named because we are going to find the azimuth between two location vectors.
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�������������[������_� �������_] �= ������[{�� �� �� �� �� �� ������}� � = {�� �� �}�

� = �����[������� �]�

� = �����[������� �������]�

� = �����������[�� �] / �������

� = ����������[�����[�� ������]]�

� = �����������[�� �] / �������

������ = ��[(� > ��)� ��� - �� �]�

������]�

Let’s see if this function gives us the same answer we obtained above.

findAzLocVectrefPt, unitVelVect

Part 2.  A user-defined function for finding the tangential velocity vector and its magnitude

Now let’s make like a squirrel burying our acorns for a hungry day, and build a user-defined function that will take geographic data for the
location of a reference point and a positive pole, along with the angular velocity around that pole expressed in degrees per million years, and
tell  us  the  orientation  of  the  unit  tangential-motion  vector  and  the  magnitude  of  the  tangential  velocity  vector  (the  tangential  speed)
expressed in kilometers per million years. 

firstTrylatPole_, longPole_, latPoint_, longPoint_, angVel_ :=

Modulea, b, c, d, e, answer, a = convert2CartlatPole, longPole;

b = convert2CartlatPoint, longPoint;

c = VectorAnglea, b  Degree;

d = angVel * 6371.01 * 2 * π * Sin[c Degree]  360;

e = unitVect3DCrossa, b;

answer = d, e;

answer;

And now we follow Ronald Reagan’s favorite Russian proverb, trust but verify.  We just computed the magnitude of the tangential vector in
km/Myr

tangentialSpeed

in km/Myr, and the unit velocity vector

unitVelVect

Let’s see if we get the same results from ��������

theAnswer = firstTry[65, -15, 26.6199, 2.68982, 0.938]

Bueno, but it seems a bit cumbersome to have a mixed list of numbers as the output.  How do we extract data values from the list provided
by the function we just wrote.  The list has two primary elements or dimensions.  If you want the value of the tangential speed in km/Myr,
you would use

theAnswer[[1]]

because it is the first element of the list.  If you want the three components of the unit tangential-motion vector in a list, you would use

theAnswer[[2]]

because it is the second element of the list.  Finally, if you wanted the Z value of the vector, you would use

theAnswer[[2, 3]]

because it is the third value in the second element of the list.  As a lazy man, it occurs to me that I can combine the tangential vector length
with the unit vector coordinates to produce a vector that is the right length and pointed in the right direction.  So let’s modify our function
to do this, and rename it in grand manner ��������������������������
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��������������������������latPole_, longPole_, latPoint_, longPoint_, angVel_ :=

Modulea, b, c, d, e, answer, a = convert2CartlatPole, longPole;

b = convert2CartlatPoint, longPoint;

c = VectorAnglea, b  Degree;

d = angVel * 6371.01 * 2 * π * Sin[c Degree]  360;

e = unitVect3DCrossa, b * d;

answer = e;

answer;

Let’s see if we get the same results from the ��������������������������

anotherAnswer = tangentialVelocityComputer[65, -15, 26.6199, 2.68982, 0.938]

Is this the same as the previous answer?  The length of the vector we just computed should be the same as the tangential speed we com-
puted earlier.  We can just use the built-in Mathematica function ���� to find the length of that vector.

theAnswer[[1]]

NormanotherAnswer

We  can  see  that  they  are  the  same.   Excellent.   And  the  unit  vector  of  the  vector  result  of  our  ��������������������������
should be the same as the unit vector we computed earlier.

theAnswer[[2]]

unitVect3DanotherAnswer

The two results are the same.  Peachy.  We will store our new function �������������������������� in a safe place till we need
it.  But what if we already have the Cartesian coordinates of the rotational pole and our reference point?  Let’s modify our function some
more to handle that situation, and call our new function �������������������.  Naw, that’s a really ugly name.  Let’s call it �����,
because Cupid worked with arrows.

�����pole_, point_, angVel_ :=

Modulea, b, c, answer, a = VectorAnglepole, point  Degree;

b = angVel * 6371.01 * 2 * π * Sin[a Degree]  360;

c = unitVect3DCrosspole, point * b;

answer = c;

answer;

Let’s see if we get the same results from �����

yetAnotherAnswer = cupidpole, refPt, 0.938

Firme.  We will use ����� soon.

�������������������������������������

Let’s  simplify  all  of  the  foregoing  mess  and  list  the  code  we  need  to  solve  a  simple  problem.   In  fact,  let’s  re-solve  the  problem  we  just
solved, so that we know our boiled-down code is correct.  And to be sure that we’re not cheating, we will begin by clearing all of the old
answers. 

ClearAllpole, refPt, ω, tanVelVect, tanSpeed,

azimuth, cupid, convert2cart, unitVect3D, findAzLocVect;

Question:  What is the azimuth (expressed in degrees) and magnitude of the tangential instantaneous velocity vector (expressed in km/Myr
and cm/yr) at a reference point at 26.6199°N latitude 2.68982°E longitude given a rotational pole at 65°N latitude 15°W longitude and an
angular velocity of 0.938°/Myr?  What are the coordinates of the tangential velocity vector?
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Input  

poleLat = 65; poleLong = -15; angVel = 0.938
refPtLat = 26.6199;
refPtLong = 2.68982;

User-defined functions  

convert2Cartlat_, long_ := Coslat Degree Coslong Degree,

Coslat Degree Sinlong Degree, Sinlat Degree;

unitVect3D[vect_] :=
{(vect[[1]] / Norm[vect]), (vect[[2]] / Norm[vect]), (vect[[3]] / Norm[vect])};

�����pole_, point_, angVel_ :=

Modulea, b, c, answer, a = VectorAnglepole, point  Degree;

b = angVel * 6371.01 * 2 * π * Sin[a Degree]  360;

c = unitVect3DCrosspole, point * b;

answer = c;

answer;

�������������[������_� �������_] �= ������[{�� �� �� �� �� �� ������}� � = {�� �� �}�

� = �����[������� �]�

� = �����[������� �������]�

� = �����������[�� �] / �������

� = ����������[�����[�� ������]]�

� = �����������[�� �] / �������

������ = ��[(� > ��)� ��� - �� �]�

������]�

Computation  

pole = convert2CartpoleLat, poleLong;

refPt = convert2CartrefPtLat, refPtLong;

tanVelVect = cupidpole, refPt, angVel;

tanSpeed = NormtanVelVect;

azimuth = findAzLocVectrefPt, tanVelVect;

Answer  

The magnitude of the tangential velocity vector is  

tanSpeed

km/Myr, or  

0.1 * tanSpeed

cm/yr.  The azimuth of the tangential velocity vector is  

azimuth

degrees measured clockwise from north.  The coordinates of the tangential velocity vector (km/Myr) are  

tanVelVect

and, expressed in cm/yr are  

0.1 * tanVelVect

Exercise 6.5-1.  The little bridge along the Parkfield-Coalinga road near Parkfield, California, is one of the most famous bridges in the
world, at least to seismologists.  Seismologists who get out of their offices and look at actual faults, that is.  The bridge has been rebuilt
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many times, in large part because the San Andreas fault passes between the northeast and southwest ends of the bridge.  According to
Google Earth, the bridge is located at 35.895172°N latitude and 120.434657°W longitude.  The current best estimate for the location  of
the  instantaneous  pole  of  motion  around  which  the  Pacific  plate  rotates  relative  to  North  America  is  48.9°S  latitude  and  108.3°E
longitude, with an angular velocity of 0.750°/Myr (DeMets and others, 2010).
Write a Mathematica notebook that computes the direction (azimuth) and magnitude (cm/yr) of the instantaneous tangential motion  of
the Pacific plate relative to the North American plate at the Parkfield bridge.

Exercise 6.5-2.  UNAVCO maintains web-accessible datasets from geodetic GPS stations throughout the United States and elsewhere.
One of the GPS stations is called CARH (short for CARH_SCGN_CN2001), and is located at 35.88839°N latitude and 120.43082°W
longitude, near the Parkfield bridge on the Pacific side of the San Andreas fault.  The motion of CARH relative to the North American
reference  frame  (NAM08)  is  expressed  as  north-south,  east-west,  and  up-down  velocity  vectors  on  the  time-series  graphs  that  are
accessible  at  http://www.unavco.org/instrumentation/networks/status/pbo/overview/CARH.   The  CARH  data  were  accessed  on
March  2,  2017,  and  the  NAM08  velocities  were  26.51±0.19  mm/yr  toward  north,  20.21±0.17  mm/yr  toward  west,  and  1.02±0.24
mm/yr  up.   Using  only  the  horizontal  velocities,  determine  the  direction  (azimuth)  and  magnitude  (cm/yr)  of  the  motion  of  CARH
relative to the stable cratonic interior of North America.  (You can do this with a calculator, the Pythagorean Theorem, and the SOH
CAH  TOA  mnemonic  to  help  solve  right-triangle  problems.)   How  does  the  GPS  velocity  vector  compare  with  your  answer  for
Exercise  7-3?   Now  do  the  same  for  PBO  station  HOGS,  located  SW  of  CARH  at  35.86672°N  latitude  and  120.47950°W  longitude,
where  the  horizontal  velocities  were  29.30±0.06  mm/yr  toward  north,  21.91±0.08  mm/yr  toward  west,  and  2.80±0.40  mm/yr  down
(http://www.unavco.org/instrumentation/networks/status/pbo/overview/HOGS).   CARH  is  located  quite  near  to  the  San  Andreas
fault  trace,  and  HOGS  is  5  km  from  the  fault  on  the  Pacific  side.   Is  there  a  difference  in  tangential  (horizontal)  velocities  at  the  two
PBO sites, and if so, form a hypothesis to account for this difference.  How might you test your hypothesis?

���������������������������������������������������������

This section is under construction as of 13 February 2012, and will be added as soon as the author becomes smart enough to know how to
plot the velocity vector arrows correctly.

������������������������������������

DeMets,  C.,  Gordon,  R.G.,  and  Argus,  D.F.,  2010,  Geologically  current  plate  motions:   Geophysical  Journal  International,  doi:
10.1111/j.1365-246X.2009.04491.x;  also see http://geoscience.wisc.edu/~chuck/MORVEL/
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