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3.1  Getting ready to learn

The material that follows is often covered  in courses in vector analysis or linear algebra or structural geology or rigid-
body  mechanics,  although  in  different  ways  and  for  different  purposes.   Consequently,  there  are  many  textbook
treatments  of  this  available,  at  different  academic  levels  and  written  for  different  audiences.   I  have  adapted  material
from a vector analysis textbook by Harry Davis and Arthur Snider (1987) for this chapter.

3.2  Coordinates of a point in two different 2-D coordinate systems 

It has long been a classic homework problem in undergraduate structural geology courses to consider a specified vector,
defined  in  one  coordinate  system,  and  determine its  coordinates  in  another  coordinate  system.   Here,  we  will  be  using
right orthogonal Cartesian coordinate systems whose length units are the same.  This type of problem is referred to as a
problem in coordinate transformation.

We  will  take  the  first  baby  steps  by  thinking  about  a  2-D  example  of  coordinate  transformation.   Imagine  a  point  Q
whose location is specified by vector q in an X-Y orthogonal coordinate system (Figure 3-1).  

___________________________________________________________________________

Figure 3-1.  Location vector to point Q is {1, 2} in the X-Y coordinate system.  The X’-Y’ coordinate system is identical
to the X-Y coordinate system in all respects, except that it is oriented by θ = +30° (i.e., 30° anti-clockwise) from the X-Y
coordinate system.  The length of vector q is ~2.24.

___________________________________________________________________________

The coordinates of vector q in the X-Y coordinate system are given by

q = {1, 2};

An  infinite  number  of  other  coordinate  systems  that  use  the  same  origin  can  be  specified  in  the  X-Y  plane.   Let  us

© 2015 by Vincent S. Cronin Version of 26 January 2015



specify a second coordinate system, called the X’-Y’ system, in which the X’ axis is oriented θ=30° in a positive  or anti-
clockwise  direction from the X axis,  and the Y’ axis is θ=30° from the Y axis.   What are the coordinates of point Q in
the X’-Y’ coordinate system, given the angle θ (theta) and the coordinates in the X-Y coordinate system?

We  can determine the length of vector q using the built-in Mathematica function Norm, and display its numerical value

N[Norm[q]]

2.23607

We  can  determine  the  angle  ϕ  (phi)  between  vector  q  and  the  X  axis  using  trigonometry (remember  the  SOH  CAH
TOA  mnemonic  for  the  solution  of  right-triangle  problems?),  and  display  the  results  in  degrees  using  the  conversion
factor (180/π) to convert from radians.

phi = N[(ArcTan[q[[2]] / q[[1]]]) (180 / π)]

63.4349

The angle between the X and X’ axis is θ = 30°.

theta = 30

30

The angle between vector q and the X’ axis is ϕ – θ, so the X’ coordinate of the location vector to point Q is

qXprime = Norm[q] Cosphi - theta Degree;

and the Y’ coordinate of the location vector to point Q is

qYprime = Norm[q] Sinphi - theta Degree;

The coordinates of point Q in the X’-Y’ coordinate system are given by

qPrimeMan = NqXprime, NqYprime

{1.86603, 1.23205}

That was a lot of work, and thankfully there is a better and (ultimately) simpler way of doing this kind of problem.  But
before we  get to the simpler way,  we  need to learn a little bit about how  to work  with vectors  as matrices and how  to
multiply matrices together.

3.3  Some matrix basics in Mathematica

First,  let  us  define  two  matrices  to  play  with.   Matrix  a  is  known  as  a  3x1  matrix  because  it  has  three  rows  and  one
column.  The element in row 2 column 1  of matrix a is called a21.

a = 

a11
a21
a31

We  have  already  learned  about  how  to  introduce  vectors  into  Mathematica  code  in  section  2.5.   The  components  of  a
vector are expressed as a list, so the components of a sample vector might be input between curly brackets as follows:  

sampleVector = {13, 4, 28};

Matrices  can  be  thought  of  as  lists,  or  lists  of  lists,  or  lists  of  vectors  in  Mathematica.   There  are  a  couple  of  ways  of
writing the input code for matrices of other shapes in Mathematica.  The manual method uses curly brackets  to organize
lists of numbers or variables into columns and rows.   A matrix with 3 columns and 3 rows might be input directly using
curly brackets as follows:
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testMatrix1 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

We  can use the MatrixForm function to make it look like a 3x3 square matrix.

MatrixForm[testMatrix1]

1 2 3
4 5 6
7 8 9

Alternatively,  we can use the matrix tool in the Typesetting part of the Basic Math Assistant palette.  Look for the symbol
that looks like this:

□ □

□ □

Extra columns are created by  inserting the cursor inside the parentheses in the default 4x4 matrix, then pressing [ ,]
(that  is,  press  the  comma  key  with  the  control  key  depressed),  and  extra  rows  are  created  by  pressing  [  ].   When
you get a matrix template that looks like this

□ □ □

□ □ □

□ □ □

you can click on each individual square to insert a value or variable name in that space.

3.4  Recognizing different types of matrix

A square matrix has the same number of rows as columns.  In this 3x3 square matrix,

 

A 0 0

0 B 0

0 0 C

the part of the matrix that has all of the capital letters (A, B, C) is called the diagonal or axis of the matrix.  Values that are
in the positions occuppied by the 0s are said to be off-axis terms.

In a symmetric matrix, like the one below,  the off-axis terms in the upper right of the matrix are identical to the values in
the lower left of the matrix, directly across the diagonal.

 

A d e

d B f

e f C

In an antisymmetric matrix, the values across the diagonal from each other have the same magnitude but different sign.

 

A d -e

-d B f

e - f C

An asymmetric matrix, like 

 

A d e

g B h

n - f C

lacks at least some of the symmetries we have just examined.
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If we define a matrix M as follows,

M =  

A d e

g B h

n - f C

the transpose of matrix M is represented by MT  and is

MT
 = 

A g n

d B - f

e h C

The values  along  the  diagonal of  the  transposed  matrix  MT  are  unchanged  from  the  original  matrix  M,  but  the  values
across the diagonal from each other are swapped.

The  inverse  of  a  matrix  M  is  indicated  by  M-1.   If  a  matrix  is  multiplied  by  its  inverse,  the  result  is  the  identity  matrix
whose diagonal terms are all 1s and whose off-axis terms are all 0s.

M · M-1
 = 

1 0 0

0 1 0

0 0 1

Finally,  if the transpose of a matrix is the same as the inverse  of the matrix (i.e., if MT = M-1), that matrix (M) is called
an orthogonal matrix.

3.5  A taste of matrix mathematics

Let us define two  matrices to play with.  Matrix a is known as a 3x1 matrix because it has three rows and one column.
The element in row 2 column 1  of matrix a is called a21.

a = 

a11
a21
a31

Matrix  b  is  known  as  a  3x3  matrix  because  it  has  three  rows  and  three  columns.   The  element  in  row  2  column  3  of
matrix b is called b23.

b = 

b11 b12 b13
b21 b22 b23
b31 b32 b33

We  now want to learn how to multiply matrices a and b together to yield a product:  matrix c.  

c = b · a

This can be expanded and made explicit by components as follows:  

c11
c21
c31

=

b11 b12 b13

b21 b22 b23
b31 b32 b33

a11
a21
a31

We  can think of matrix b as a set of coordinates associated with three 3-component vectors: 

   bTopRow = {b11, b12, b13}

   bMiddleRow = {b21, b22, b23}

   bBottomRow = {b31, b32, b33}

so we can write this as 
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(c) =

bTopRow
bMiddleRow
bBottomRow

(a)

The three components of c are each found by taking a dot product of two vectors 

(c) =

(bTopRow · a)

bMiddleRow · a
(bBottomRow · a)

=

(b11 a11 ) + (b12 a21) + (b13 a31)

(b21 a11 ) + (b22 a21) + (b23 a31)

(b31 a11 ) + (b32 a21) + (b33 a31)

And so the product (c) of multiplying a 3x1 matrix (vector a) by a 3x3 matrix (matrix b) is a matrix with three compo-
nents:  a vector.  

In  these  examples,  we  start  the  process  of  multiplying  from  the  right  end  of  the  equation,  where  we  will  find  a  3x1
matrix  representing  a  vector.   Multiplying  a  3x1  matrix  by  the  next  matrix  to  the  left  (a  3x3  matrix)  yields  another  3-
component matrix representing a vector.  

Example.  Find the result of the following matrix multiplication:

0.2 0.6 0.5

0.8 0.9 0.7

0.4 0.1 0.3

11

15

18

Solution

0.2 0.6 0.5

0.8 0.9 0.7

0.4 0.1 0.3

11

15

18

 = 

(0.2*11) + (0.6*15) + (0.5*18)

(0.8*11) + (0.9*15) + (0.7*18)

(0.4*11) + (0.1*15) + (0.3*18)

=

20.2

34.9

11.3

So the product of the two matrices is the following 3-component vector:  {20.2, 34.9, 11.3}

Let’s  code  the  preceding  example  using  Mathematica  and  see  if  we  get  the  same  answer.   We  use  the  period  symbol
between the matrix names to indicate matrix (dot) multiplication.

a =

11
15
18

;

b =

0.2 0.6 0.5
0.8 0.9 0.7
0.4 0.1 0.3

;

c = b.a;

Our result using Mathematica to help us multiply the two matrices together follows:

N[c]

{{20.2}, {34.9}, {11.3}}

This is the same results we obtained by hand.

Example.  Find the result of the following matrix multiplication:

3 4 6

1 2 8

9 7 5

0.2 0.6 0.5

0.8 0.9 0.7

0.4 0.1 0.3

11

15

18
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Solution, step 1

0.2 0.6 0.5

0.8 0.9 0.7

0.4 0.1 0.3

11

15

18

 = 

(0.2*11) + (0.6*15) + (0.5*18)

(0.8*11) + (0.9*15) + (0.7*18)

(0.4*11) + (0.1*15) + (0.3*18)

=

20.2

34.9

11.3

Solution, step 2

3 4 6

1 2 8

9 7 5

20.2

34.9

11.3

 = 

(3*20.2) + (4*34.9) + (6*11.3)

(1*20.2) + (2*34.9) + (8*11.3)

(9*20.2) + (7*34.9) + (5*11.3)

 = 

268

180.4

482.6

So the product of the three matrices is the following 3-component vector:  {268, 180.4, 482.6}

3.6  Transformation matrix and its inverse

First,  let’s  find  a  unit  vector  along  the  X  axis  and  call  it  i

,  which  is  often  called  “i-hat”  since  the  diacritic  circumflex

symbol (^) above the i looks vaguely like a hat.  We  will use the ^ over a vector symbol to indicate that it is a unit vector.

Next, we’ll find a unit vector along the Y axis (yielding unit vector j

 ), Z axis ( k


 ), X’ axis ( i '


 ),  Y’ axis ( j '


 ) and Z’ axis

( k '


 ).  We  can define a coordinate transformation matrix J given by

J =

i '

· i

i '

· j


i '

·k


j '

· i

j '

· j


j '

·k


k '

· i

k '

· j

k '

·k


where the 9 elements of the matrix are each  dot products of unit vectors  along coordinate axes.   Geometrically,  i '

· i

 is

the  cosine  of  the  angle  between  the  X  and  X’  axes  (i.e.,  between i '

and i


 ).   This  is  also  called  a  direction  cosine  in  this

application.

The inverse of transformation matrix J is

J-1 = 

i '

· i


j '

· i

k '

· i


i '

· j


j '

· j

k '

· j


i '

·k

j '

·k

k '

·k


Multiplication  of  a  square  matrix  like  J  by  its  inverse  J-1  yields  the  identity  matrix,  which  is  composed  of  1s  along  the
diagonal and 0s in the off-axis positions.

J· J-1 = 

1 0 0

0 1 0

0 0 1

Transformation matrix J is an orthogonal matrix, so its inverse is the same as its transpose.  If that sentence seems to
contain mysterious or obscure truths, you should review section 3.4.

3.7  Transforming a vector from one coordinate system to another

And now for the good news.  If you know the coordinates of a vector in one coordinate system (X-Y), you can multiply
that  vector  by  the  appropriate  transformation  matrix  to  obtain  the  coordinates  of  that  same  vector  in  a  different
coordinate  system  (X’-Y’)  where  both  coordinate  systems  have  the  same  origin.   For  the  2-D  problem  we  began with,
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involving  vector  q,  the  matrix  j  transforms the  coordinates  from  the  original  coordinate  system  to  a  new  coordinate
system that is rotated theta degrees from the original in the same plane (Figure 3-2).

___________________________________________________________________________

Figure  3  -  2.   Projections  of  rotated  unit  vectors  onto  unit  vectors  along  the  axes  of  the  original  X  -  Y  coordinate
system. 

___________________________________________________________________________

Adapting the 2-D solution from the 3-D solution shown above, we have  

j = 
i '

· i

i '

· j


j '

· i

j '

· j


The components of j are the direction cosines of the new coordinate axes (X’-Y’) relative to the old axes (X-Y).  

Another way of visualizing the components of j in 2-D is 

j = 
X coordinate of unit vector i '


Y coordinate of unit vector i '



X coordinate of unit vector j '


Y coordinate of unit vector j '


and in 3-D is 

j = 

X coordinate of i '


Y coordinate of i '


Z coordinate of i '


X coordinate of j '


Y coordinate of j '


Z coordinate of j '


X coordinate of k '


Y coordinate of k '


Z coordinate of k '


If, in our 2-D example, the X’ axis is a positive (counter-clockwise) rotation from the X axis as in Fig.  3-2, the matrix j
is defined for our purposes as follows: 

j =
Cos[theta Degree] Sin[theta Degree]
-Sin[theta Degree] Cos[theta Degree]

;

Let’s see if we get the same results as we derived by hand.  The coordinates of q in the X-Y coordinate system are

q

{1, 2}

The matrix solution is computed using the following expression,

qPrimeMat = j.q;

which yields the following numerical solution:
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NqPrimeMat

{1.86603, 1.23205}

The manual results were

qPrimeMan

{1.86603, 1.23205}

so  matrix  mathematics  provided  the  same  answer  as  the  process  of  drawing  a  picture  and  solving  trigonometry
problems.   It  is  a  good  thing  to  know  multiple  ways  of  solving  a  problem,  particularly  if  one  of  them  proves  to  be
computationally easier or faster under a given set of circumstances.

Exercise  3.1   Write  a  Mathematica  notebook  that  solves  2-D  problems  of  the  sort  described  in  Exercises  3.1a
and  3.1b  that  works  with  any  vector  when  the  angle  between  the  two  coordinate  systems  is  a  positive  number
and  also  works  when  that  angle  is  a  negative  number.
.  (a)  You  are  given  a  vector  a  with  components  {2,  3}  in  an  X-Y  coordinate  system.   Write  a  Mathematica
notebook that determines the components of that vector in an X'-Y' coordinate system that is oriented 20° (i.e.,
in  a  positive  or  counter-clockwise  direction)  from  the  X-Y  system,  shares  a  common  origin,  and  is  in  the  X-Y
plane.                             . (b) You  are given a vector b with components {4, 7} in an X-Y coordinate system.
Write  a  Mathematica  notebook  that  determines  the  components  of  that  vector  in  an  X’-Y’  coordinate  system
that is oriented -50° (i.e., clockwise) from the X-Y system, shares a common origin, and is in the X-Y plane.
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