Print your name: \qquad

Worksheet on Vector Dot Products and Simple Matrix Mathematics

1. Given the vectors $a=\{2,5,3\}$ and $\mathrm{b}=\{6,9,11\}$, what is the scalar result of the dot product $a \cdot b$? Show your work.
2. What are the norms (lengths) of vectors a and b from question 1 ?
3. What is the angle between vectors a and b from question 1 ?
4. What are the unit vectors \hat{a} and \hat{b} that coincide with vectors a and b from question 1 ?
5. What is the angle between vectors a (from question 1) and \hat{a} (from question 4)? Show your work.
6. Where (in terms of rows and columns) is the value c_{23} located in a matrix c ?
7. Represent vector a from question 1 as a 3×1 matrix where $a_{\| 1}$ is the x coordinate of a Cartesian coordinate system, a_{21} is the y coordinate, and a_{31} is the z coordinate.
8. Represent vector b from question 1 as a 1 x 3 matrix where $b_{\| 1}$ is the x coordinate of a Cartesian coordinate system, b_{12} is the y coordinate, and b_{13} is the z coordinate.
9. If we define matrix c as given below, (a) compute the product d of the equation $d=c \cdot a$, showing all your work, and (b) what sort of mathematical object/entity might d be considered to be?

$$
c=\left[\begin{array}{ccc}
3 & -1 & 0 \\
5 & 2 & 4 \\
-2 & 0 & 6
\end{array}\right]
$$

10. If we define matrix e as given below, (a) compute the product p of the equation $p=e \cdot c \cdot a$, showing all your work, and (b) what sort of mathematical object/entity might p be considered to be?

$$
e=\left[\begin{array}{ccc}
4 & 0 & -3 \\
8 & 3 & 2 \\
7 & 1 & 5
\end{array}\right]
$$

11. Within the matrix brackets below, provide an example of a symmetric 3×3 matrix, and circle the diagonal of the matrix.

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]
$$

12. Within the matrix brackets below, provide an example of an antisymmetric 3×3 matrix.

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]
$$

13. Within the matrix brackets below, provide an example of an asymmetric 3×3 matrix.

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]
$$

14. Within the matrix brackets below, give the transpose of matrix e from question 10 .

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]
$$

15. Within the matrix brackets below, show the identity matrix.

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]
$$

