Deformation Mechanisms

A brief synopsis

Figure 6-10 Brittle-to-ductile transition of pyroxenite. Effect of confining pressure on the strength of Sleaford Bay clinopyroxenite tested in triaxial compression. (After Kirby, 1980.)

CONTINENTAL CRUST

Seismo-structural section through the San Andreas fault

Figure 6-11 Temperature effects on the behavior of granite tested in compression. (After Heard, 1960.)

Figure 6-12 Temperature effects on the behavior of basalt tested in compression. (After Heard, 1960.)

Processes that depend more on differential stress than on temperature, and that change a mineral's shape without melting, fracturing or faulting.

- Pressure solution
- Kinking
- Dislocation glide
- Mechanical twinning

Processes that depend more on differential stress than on temperature, and that change a mineral's shape without melting, fracturing or faulting.

Pressure solution

Pressure solution

Processes that depend more on differential stress than on temperature, and that change a mineral's shape without melting, fracturing or faulting.

- Pressure solution
- Kinking

Development of kink bands

Figure 7-7 Sketch showing the development of kink bands by the mechanism of bend gliding. (a) Undistorted crystal; (b) crystal bent by "two-sided" gliding parallel to the layer of atoms; (c) initial stage kinking leading to a chevron-shaped kink; (d) complex kinking as seen in a section normal to f. T = gliding plane, f = gliding line, f = axis of rotation or bending. (After Mugge, 1898.)

Figure 7-8 Schematic drawings of three types of kink bands in crystals. (a) Kink bands in crystals loaded parallel to strong planar anisotropy. (b) Intersecting conjugate kinks loaded parallel to a strong planar anisotropy. (c) Symmetrical kink in crystal whose slip plane T_1 is in an orientation of high shearing stress. (From Carter and Raleigh, 1969.)

Processes that depend more on differential stress than on temperature, and that change a mineral's shape without melting, fracturing or faulting.

- Pressure solution
- Kinking
- Dislocation glide

Undeformed lattice

Dislocation glide

Processes that depend more on differential stress than on temperature, and that change a mineral's shape without melting, fracturing or faulting.

- Pressure solution
- Kinking
- Dislocation glide
- Mechanical twinning

Mechanically twinned calcite lattice

Mechanically twinned lattice

LOAD FAVORABLE FOR TWINNING

LOAD UNFAVORABLE
FOR TWINNING
(FAVORABLE FOR TRANSLATION
ON (AND 1)

RESOLUED SHEAR STRESS COEFFICIENT S_0 is a function of the angles between the glide plane and the load axes (X_0) and the glide line and the load axes (X_0) .

$$S_0 = \sin \chi_0 \cos \lambda_0$$

 $\Upsilon = S_0 (O_1 - O_3) = \frac{O_1 - O_3}{2} \sin 2\theta$
MAXY OCCURS WHEN $\theta = 45^\circ$

Figure 7-6 (Top) Twin gliding is most likely to occur when the principal stress direction is oriented at an angle that will produce high shear stress on the potential glide surface. (Center) A section through a twinned calcite crystal. (After Friedman, 1963, Jour. of Geology, by permission of Univ. of Chicago.) (Bottom) A block diagram showing displacements across a horizontal twin plane. (After Carter and Raleigh, 1969.)

Figure 60. Critical resolved shear stress for dolomite (Dol.) and calcite $(\underline{e} \text{ and } \underline{r})$ versus temperature.

High-Temperature Crystal Plasticity

Diffusion-assisted and hence temperature-dependant processes that change a mineral's shape without melting, fracturing or faulting

Point defects: vacancies, interstitials, substitutions

Vacancies

Fig. A.1 Cation and anion charge-balanced Shottky defects in NaCl.

Interstitial atoms

Fig. A.2 Pair of charge-balanced Frenkel defects in AgI.

Substitution errors

Fig. A.3 Substitution of a Ca²⁺ cation for a Na⁺ cation in NaCl, accompanied by the formation of a vacant cation site in order to maintain charge neutrality.

Fig. A.4 Diffusion of a cation in NaCl assisted through the presence of Shottky defects.

Line defects

- Twins
- Dislocations
 - Edge
 - Screw
 - Mixed

Fig. A.6 Schematic representation of an edge dislocation.

Motion of edge dislocation through a lattice

Propagation of a screw dislocation

Edge and screw dislocations on the same slipped patch

00000000 .0000000000000000000

Planar defects

- Grain boundaries
- Twin planes
- Subgrain boundaries
- Deformation bands/lamellae
- Bohm lamellae
- Stacking faults

Unstrained lattice

(a)

Elastically strained lattice

Plastically strained lattice

Poligonized lattice

Edge Dislocations of Opposite Sign Within Same Slip Planes

Extra Half-Plane

Dislocations Cancel Each Other and Lattice is Healed

Edge Dislocations of Opposite Sign Within Different Slip Planes

Dislocations
Meet and
Produce a Line
of Vacancies

Edge Dislocations of Opposite Sign with "Overlapping" Half-Planes

Dislocations Become Locked and Remain in Lattice, Resulting in Strain Hardening

Jog in an edge dislocation

Recovery

Processes occurring between 0.3-0.5 Tm that reduce dislocation density (and hence reduce the elastic strain energy inside of a crystal).

Work hardening (tangling of dislocations)

- competes with recovery. **Vacancy diffusion** helps untangle dislocations
- **Climb** to straighten and untangle dislocations
- Dislocation anihilation
- Ordering of dislocations into walls
- Subgrain formation

Unstrained, recovered lattice

Dislocation creep = dislocation glide + dislocation climb

The motion of dislocations and vacancies through a crystal occurs at all temperatures, but it is much faster at high temperatures than at low temperatures.

Dislocation creep = dislocation glide + dislocation climb

At high temperatures, it takes less energy for vacancies to diffuse through or around a crystal.

The amount of strain energy needed to break chemical bonds

Competing Processes

Work Hardening:

dislocations tangle and obstruct each others' motion. Strain leads to an increase in dislocations, inhibiting further strain.

Competing Processes

Work Softening:

dislocations are anihilated or organized into subgrain boundaries (tilt walls), resulting in lattices that contain fewer dislocations.

Recovery and recrystallization are involved; enhanced at higher temperatures.

Homologous Temperature (Tm)

This is the melting temperature of a mineral expressed in the Kelvin temperature scale:

 $0 K = -273.16^{\circ}C$

Zero Kelvin is called **absolute zero**, because it is the temperature at which the volume of any ideal gas would reach zero and at which all thermal vibration of

Primary Recrystallization Occurs at temperatures above half the homologous temperature (Tm) for a mineral.

- Grain boundary area reduction (GBAR)
 - Grain boundaries are straightened and flattened
 - Ratio of volume to surface area is maximized for given physical and chemical conditions
- Equilibrium is approached, given enough time at high temperature

Dynamic Recrystallization

Processes that reduce the internal strain energy of a crystal and reduce the surface energy along grain boundaries.

- Grain boundary migration recrystallization (GBM)
- Subgrain rotation recrystallization (SR)

Dynamic Recrystallization

...under high flow stress results in smaller crystals

Dynamically recrystalized rocks with smaller crystals are typically stronger and denser than they were before deformation.

Texas A&M University Center for Tectonophysics

Flow Laws
Dislocation (or power-law)
creep modeled with a form of the
Dorn equation

$$\dot{\varepsilon} = A\sigma^{n} e^{(-Q/RT)}$$

Diffusion creep

- Coble creep (grain-boundary diffusion)
- Nabarro-Herring creep (volume/ vacancy diffusion)

grain size 10 µm; P=100 MPa

grain size 100 µm; P=100 MPa

homologous temperature

"Flake" tectonics involving strong upper continental crust moving over a weaker lower continental crust (crustal asthenosphere)

